The spatial spread of the highly pathogenic avian influenza virus H5N1 and its long-term persistence in Asia have resulted in avian influenza panzootics and enormous economic losses in the poultry sector. However, an understanding of the regional long-distance transmission and seasonal patterns of the virus is still lacking. In this study, we present a phylogeographic approach to reconstruct the viral migration network. We show that within each wild fowl migratory flyway, the timing of H5N1 outbreaks and viral migrations are closely associated, but little viral transmission was observed between the flyways. The bird migration network is shown to better reflect the observed viral gene sequence data than other networks and contributes to seasonal H5N1 epidemics in local regions and its large-scale transmission along flyways. These findings have potentially far-reaching consequences, improving our understanding of how bird migration drives the periodic reemergence of H5N1 in Asia.
The incidence of dengue has grown dramatically in recent decades worldwide, especially in Southeast Asia and the Americas with substantial transmission in 2014–2015. Yet the mechanisms underlying the spatio-temporal circulation of dengue virus (DENV) serotypes at large geographical scales remain elusive. Here we investigate the co-circulation in Asia of DENV serotypes 1–3 from 1956 to 2015, using a statistical framework that jointly estimates migration history and quantifies potential predictors of viral spatial diffusion, including socio-economic, air transportation and maritime mobility data. We find that the spread of DENV-1, -2 and -3 lineages in Asia is significantly associated with air traffic. Our analyses suggest the network centrality of air traffic hubs such as Thailand and India contribute to seeding dengue epidemics, whilst China, Cambodia, Indonesia, and Singapore may establish viral diffusion links with multiple countries in Asia. Phylogeographic reconstructions help to explain how growing air transportation networks could influence the dynamics of DENV circulation.
Hantavirus, a rodent-borne zoonotic pathogen, has a global distribution with 200,000 human infections diagnosed annually. In recent decades, repeated outbreaks of hantavirus infections have been reported in Eurasia and America. These outbreaks have led to public concern and an interest in understanding the underlying biological mechanisms. Here, we propose a climate-animalHantaan virus (HTNV) infection model to address this issue, using a unique dataset spanning a 54-y period . This dataset comes from Central China, a focal point for natural HTNV infection, and includes both field surveillance and an epidemiological record. We reveal that the 8-y cycle of HTNV outbreaks is driven by the confluence of the cyclic dynamics of striped field mouse (Apodemus agrarius) populations and climate variability, at both seasonal and interannual cycles. Two climatic variables play key roles in the ecology of the HTNV system: temperature and rainfall. These variables account for the dynamics in the host reservoir system and markedly affect both the rate of transmission and the potential risk of outbreaks. Our results suggest that outbreaks of HTNV infection occur only when climatic conditions are favorable for both rodent population growth and virus transmission. These findings improve our understanding of how climate drives the periodic reemergence of zoonotic disease outbreaks over long timescales.Hantaan virus | spillover to humans | wildlife reservoir | time-series data | climate change
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.