Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera(1) and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium(2), and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness
Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation 1. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Mya). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species 2. Medicago truncatula (Mt) is a long-established model for the study of legume biology. Here we describe the draft sequence of the Mt euchromatin based on a recently completed BAC-assembly supplemented with Illumina-shotgun sequence, together capturing ~94% of all Mt genes. A whole-genome duplication (WGD) approximately 58 Mya played a major role in shaping the Mt genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the Mt genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max (Gm) and Lotus japonicus (Lj). Mt is a close relative of alfalfa (M. sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the Mt genome sequence provides significant opportunities to expand alfalfa’s genomic toolbox.
Streptococcus mutans is the leading cause of dental caries (tooth decay) worldwide and is considered to be the most cariogenic of all of the oral streptococci. The genome of S. mutans UA159, a serotype c strain, has been completely sequenced and is composed of 2,030,936 base pairs. It contains 1,963 ORFs, 63% of which have been assigned putative functions. The genome analysis provides further insight into how S. mutans has adapted to surviving the oral environment through resource acquisition, defense against host factors, and use of gene products that maintain its niche against microbial competitors. S. mutans metabolizes a wide variety of carbohydrates via nonoxidative pathways, and all of these pathways have been identified, along with the associated transport systems whose genes account for almost 15% of the genome. Virulence genes associated with extracellular adherent glucan production, adhesins, acid tolerance, proteases, and putative hemolysins have been identified. Strain UA159 is naturally competent and contains all of the genes essential for competence and quorum sensing. Mobile genetic elements in the form of IS elements and transposons are prominent in the genome and include a previously uncharacterized conjugative transposon and a composite transposon containing genes for the synthesis of antibiotics of the gramicidin͞bacitracin family; however, no bacteriophage genomes are present.
The 1,815,783-bp genome of a serotype M49 strain of Streptococcus pyogenes (group A streptococcus [GAS]), strain NZ131, has been determined. This GAS strain (FCT type 3; emm pattern E), originally isolated from a case of acute post-streptococcal glomerulonephritis, is unusually competent for electrotransformation and has been used extensively as a model organism for both basic genetic and pathogenesis investigations. As with the previously sequenced S. pyogenes genomes, three unique prophages are a major source of genetic diversity. Two clustered regularly interspaced short palindromic repeat (CRISPR) regions were present in the genome, providing genetic information on previous prophage encounters. A unique cluster of genes was found in the pathogenicity island-like emm region that included a novel Nudix hydrolase, and, further, this cluster appears to be specific for serotype M49 and M82 strains. Nudix hydrolases eliminate potentially hazardous materials or prevent the unbalanced accumulation of normal metabolites; in bacteria, these enzymes may play a role in host cell invasion. Since M49 S. pyogenes strains have been known to be associated with skin infections, the Nudix hydrolase and its associated genes may have a role in facilitating survival in an environment that is more variable and unpredictable than the uniform warmth and moisture of the throat. The genome of NZ131 continues to shed light upon the evolutionary history of this human pathogen. Apparent horizontal transfer of genetic material has led to the existence of highly variable virulence-associated regions that are marked by multiple rearrangements and genetic diversification while other regions, even those associated with virulence, vary little between genomes. The genome regions that encode surface gene products that will interact with host targets or aid in immune avoidance are the ones that display the most sequence diversity. Thus, while natural selection favors stability in much of the genome, it favors diversity in these regions. Group A streptococcus ([GAS] Streptococcus pyogenes)causes a wide range of human diseases ranging from uncomplicated pharyngitis to life-threatening invasive disease. Acute post-streptococcal glomerulonephritis (APSGN) is one of the nonsuppurative sequelae that can occur following a GAS infection; the other common postinfection sequelae are rheumatic heart disease. Worldwide, it is estimated that approximately 470,000 cases of APSGN occur annually (23). Children and young adults are affected most commonly, with males having twice the incidence as females (74). By the 1940s, evidence was found that streptococcal skin infections were associated with APSGN, and these infections usually did not cause rheumatic fever, leading to the hypothesis that certain GAS strains were "rheumatogenic" while others were "nephritogenic" (41, 72). Further, divergent seasonal patterns of peak incidence exist separating nephritogenic and rheumatogenic GAS, with APSGN cases peaking in the late summer simultaneously with skin infections w...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.