Individuals participating in biobanks and other large research projects are increasingly asked to provide broad consent for open-ended research use and widespread sharing of their biosamples and data. We assessed willingness to participate in a biobank using different consent and data sharing models, hypothesizing that willingness would be higher under more restrictive scenarios. Perceived benefits, concerns, and information needs were also assessed. In this experimental survey, individuals from 11 US healthcare systems in the Electronic Medical Records and Genomics (eMERGE) Network were randomly allocated to one of three hypothetical scenarios: tiered consent and controlled data sharing; broad consent and controlled data sharing; or broad consent and open data sharing. Of 82,328 eligible individuals, exactly 13,000 (15.8%) completed the survey. Overall, 66% (95% CI: 63%-69%) of population-weighted respondents stated they would be willing to participate in a biobank; willingness and attitudes did not differ between respondents in the three scenarios. Willingness to participate was associated with self-identified white race, higher educational attainment, lower religiosity, perceiving more research benefits, fewer concerns, and fewer information needs. Most (86%, CI: 84%-87%) participants would want to know what would happen if a researcher misused their health information; fewer (51%, CI: 47%-55%) would worry about their privacy. The concern that the use of broad consent and open data sharing could adversely affect participant recruitment is not supported by these findings. Addressing potential participants' concerns and information needs and building trust and relationships with communities may increase acceptance of broad consent and wide data sharing in biobank research.
The eMERGE Consortium* , * The advancement of precision medicine requires new methods to coordinate and deliver genetic data from heterogeneous sources to physicians and patients. The eMERGE III Network enrolled >25,000 participants from biobank and prospective cohorts of predominantly healthy individuals for clinical genetic testing to determine clinically actionable findings. The network developed protocols linking together the 11 participant collection sites and 2 clinical genetic testing laboratories. DNA capture panels targeting 109 genes were used for testing of DNA and sample collection, data generation, interpretation, reporting, delivery, and storage were each harmonized. A compliant and secure network enabled ongoing review and reconciliation of clinical interpretations, while maintaining communication and data sharing between clinicians and investigators. A total of 202 individuals had positive diagnostic findings relevant to the indication for testing and 1,294 had additional/secondary findings of medical significance deemed to be returnable, establishing data return rates for other testing endeavors. This study accomplished integration of structured genomic results into multiple electronic health record (EHR) systems, setting the stage for clinical decision support to enable genomic medicine. Further, the established processes enable different sequencing sites to harmonize technical and interpretive aspects of sequencing tests, a critical achievement toward global standardization of genomic testing. The eMERGE protocols and tools are available for widespread dissemination.
Hereditary hemochromatosis (HH) is a common autosomal-recessive disorder associated with pathogenic HFE variants, most commonly those resulting in p.Cys282Tyr and p.His63Asp. Recommendations on returning incidental findings of HFE variants in individuals undergoing genome-scale sequencing should be informed by penetrance estimates of HH in unselected samples. We used the eMERGE Network, a multicenter cohort with genotype data linked to electronic medical records, to estimate the diagnostic rate and clinical penetrance of HH in 98 individuals homozygous for the variant coding for HFE p.Cys282Tyr and 397 compound heterozygotes with variants resulting in p.[His63Asp];[Cys282Tyr]. The diagnostic rate of HH in males was 24.4% for p.Cys282Tyr homozygotes and 3.5% for compound heterozygotes (p < 0.001); in females, it was 14.0% for p.Cys282Tyr homozygotes and 2.3% for compound heterozygotes (p < 0.001). Only males showed differences across genotypes in transferrin saturation levels (100% of homozygotes versus 37.5% of compound heterozygotes with transferrin saturation > 50%; p = 0.003), serum ferritin levels (77.8% versus 33.3% with serum ferritin > 300 ng/ml; p = 0.006), and diabetes (44.7% versus 28.0%; p = 0.03). No differences were found in the prevalence of heart disease, arthritis, or liver disease, except for the rate of liver biopsy (10.9% versus 1.8% [p = 0.013] in males; 9.1% versus 2% [p = 0.035] in females). Given the higher rate of HH diagnosis than in prior studies, the high penetrance of iron overload, and the frequency of at-risk genotypes, in addition to other suggested actionable adult-onset genetic conditions, opportunistic screening should be considered for p.[Cys282Tyr];[Cys282Tyr] individuals with existing genomic data.
Assessment indicates NIPT is being adopted by MFMs, largely in accord with recently published American College of Obstetricians and Gynecologists and the Society for MFM guidelines. Cost and test performance remain factors for not adopting NIPT. Further research on clinical management based on NIPT results and patient understanding of NIPT results is suggested.
We examined the Institutional Review Board (IRB) process at 9 academic institutions in the electronic Medical Records and Genomics (eMERGE) Network, for proposed electronic health record-based genomic medicine studies, to identify common questions and concerns. Sequencing of 109 disease related genes and genotyping of 14 actionable variants is being performed in ~28,100 participants from the 9 sites. Pathogenic/likely pathogenic variants in actionable genes are being returned to study participants. We examined each site’s research protocols, informed-consent materials, and interactions with IRB staff. Research staff at each site completed questionnaires regarding their IRB interactions. The time to prepare protocols for IRB submission, number of revisions and time to approval ranged from 10–261 days, 0–11, and 11–90 days, respectively. IRB recommendations related to the readability of informed consent materials, specifying the full range of potential risks, providing options for receiving limited results or withdrawal, sharing of information with family members, and establishing the mechanisms to answer participant questions. IRBs reviewing studies that involve the return of results from genomic sequencing have a diverse array of concerns, and anticipating these concerns can help investigators to more effectively engage IRBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.