Summary Tumor endothelial cells (ECs) promote cancer progression in ways beyond their role as conduits supporting metabolism. However, it is not understood how vascular niche-derived paracrine factors, known as angiocrine factors, provoke tumor aggressiveness. Here, we show that FGF4 produced by B-Cell lymphoma cells (LCs) through activating FGFR1 upregulates the Notch-ligand Jagged1 (Jag1) on neighboring tumor ECs. In turn, upregulation of Jag1 on ECs reciprocally induces Notch2-Hey1 in LCs. This crosstalk enforces aggressive CD44+IGF1R+CSF1R+ LC phenotypes, including extra-nodal invasion and chemoresistance. Inducible EC-selective deletion of Fgfr1 or Jag1 in the Eμ-Myc lymphoma model or impairing Notch2 signaling in mouse and human LCs diminished lymphoma aggressiveness and prolonged mouse survival. Thus, targeting the angiocrine FGF4-FGFR1/Jag1-Notch2 loop could inhibit LC aggressiveness and enhance chemosensitivity.
Purpose: Bone marrow-derived progenitor cells, including VEGFR2þ endothelial progenitor cells (EPCs) and copper-dependent pathways, model the tumor microenvironment. We hypothesized that copper depletion using tetrathiomolybdate would reduce EPCs in high risk for patients with breast cancer who have relapsed. We investigated the effect of tetrathiomolybdate on the tumor microenvironment in preclinical models. Experimental Design: Patients with stage II triple-negative breast cancer (TNBC), stage III and stage IV without any evidence of disease (NED), received oral tetrathiomolybdate to maintain ceruloplasmin (Cp) between 8 and 17 mg/dL for 2 years or until relapse. Endpoints were effect on EPCs and other biomarkers, safety, event-free (EFS), and overall survival (OS). For laboratory studies, MDA-LM2-luciferase cells were implanted into CB17-SCID mice and treated with tetrathiomolybdate or water. Tumor progression was quantified by bioluminescence imaging (BLI), copper depletion status by Cp oxidase levels, lysyl oxidase (LOX) activity by ELISA, and collagen deposition.Results: Seventy-five patients enrolled; 51 patients completed 2 years (1,396 cycles). Most common grade 3/4 toxicity was neutropenia (3.7%). Lower Cp levels correlated with reduced EPCs (P ¼ 0.002) and LOXL-2 (P < 0.001). Two-year EFS for patients with stage II-III and stage IV NED was 91% and 67%, respectively. For patients with TNBC, EFS was 90% (adjuvant patients) and 50% (stage IV NED patients) at a median follow-up of 6.3 years, respectively. In preclinical models, tetrathiomolybdate decreased metastases to lungs (P ¼ 0.04), LOX activity (P ¼ 0.03), and collagen crosslinking (P ¼ 0.012).Conclusions: Tetrathiomolybdate is safe, well tolerated, and affects copper-dependent components of the tumor microenvironment. Biomarker-driven clinical trials in high risk for patients with recurrent breast cancer are warranted.
Metastatic tumors have been shown to establish permissive microenvironments for metastases via recruitment of bone marrow (BM)- derived cells. Here, we show that metastasis-incompetent tumors are also capable of generating such microenvironments. However, in these situations the otherwise pro-metastatic Gr1+ myeloid cells create a metastasis-refractory microenvironment via the induction of thrombospondin-1 (Tsp-1) by tumor-secreted prosaposin. (BM)-specific genetic deletion of Tsp-1 abolished the inhibition of metastasis, which was restored by BM transplant from Tsp-1+ donors. We also developed a 5-amino acid peptide from prosaposin as a pharmacological inducer of Tsp-1 in Gr1+ BM cells, which dramatically suppresses metastasis. These results provide mechanistic insights into why certain tumors are deficient in metastatic potential and implicate recruited Gr1+ myeloid cells as the main source of Tsp-1. The results underscore the plasticity of Gr1+ cells, which, depending on the context, promote or inhibit metastasis, and suggest that the peptide could be a potential therapeutic agent against metastatic cancer.
Emerging studies have begun to demonstrate that reprogrammed stromal cells play pivotal roles in tumor growth, metastasis, and resistance to therapy. However, the contribution of stromal cells to non-small-cell lung cancer (NSCLC) has remained underexplored. We used an orthotopic model of Kras-driven NSCLC to systematically dissect the contribution of specific hematopoietic stromal cells in lung cancer. RNA deep-sequencing analysis of individually sorted myeloid lineage and tumor epithelial cells revealed cell-type-specific differentially regulated genes, indicative of activated stroma. We developed a computational model for crosstalk signaling discovery based on ligand-receptor interactions and downstream signaling networks and identified known and novel tumor-stroma paracrine and tumor autocrine crosstalk-signaling pathways in NSCLC. We provide cellular and molecular insights into components of the lung cancer microenvironment that contribute to carcinogenesis. This study has the potential for development of therapeutic strategies that target tumor-stroma interactions and may complement conventional anti-cancer treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.