Wireless sensor networks (WSN) are one of the significant technologies due to their diverse applications such as health care monitoring, smart phones, military, disaster management, and other surveillance systems. Sensor nodes are usually deployed in large number that work independently in unattended harsh environments. Due to constraint resources, typically the scarce battery power, these wireless nodes are grouped into clusters for energy efficient communication. In clustering hierarchical schemes have achieved great interest for minimizing energy consumption. Hierarchical schemes are generally categorized as cluster-based and grid-based approaches. In cluster-based approaches, nodes are grouped into clusters, where a resourceful sensor node is nominated as a cluster head (CH) while in grid-based approach the network is divided into confined virtual grids usually performed by the base station. This paper highlights and discusses the design challenges for cluster-based schemes, the important cluster formation parameters, and classification of hierarchical clustering protocols. Moreover, existing cluster-based and grid-based techniques are evaluated by considering certain parameters to help users in selecting appropriate technique. Furthermore, a detailed summary of these protocols is presented with their advantages, disadvantages, and applicability in particular cases.
Wireless Sensor Networks (WSNs) are becoming ubiquitous in everyday life due to their applications in weather forecasting, surveillance, implantable sensors for health monitoring and other plethora of applications. WSN is equipped with hundreds and thousands of small sensor nodes. As the size of a sensor node decreases, critical issues such as limited energy, computation time and limited memory become even more highlighted. In such a case, network lifetime mainly depends on efficient use of available resources. Organizing nearby nodes into clusters make it convenient to efficiently manage each cluster as well as the overall network. In this paper, we extend our previous work of grid-based hybrid network deployment approach, in which merge and split technique has been proposed to construct network topology. Constructing topology through our proposed technique, in this paper we have used analytical network process (ANP) model for cluster head selection in WSN. Five distinct parameters: distance from nodes (DistNode), residual energy level (REL), distance from centroid (DistCent), number of times the node has been selected as cluster head (TCH) and merged node (MN) are considered for CH selection. The problem of CH selection based on these parameters is tackled as a multi criteria decision system, for which ANP method is used for optimum cluster head selection. Main contribution of this work is to check the applicability of ANP model for cluster head selection in WSN. In addition, sensitivity analysis is carried out to check the stability of alternatives (available candidate nodes) and their ranking for different scenarios. The simulation results show that the proposed method outperforms existing energy efficient clustering protocols in terms of optimum CH selection and minimizing CH reselection process that results in extending overall network lifetime. This paper analyzes that ANP method used for CH selection with better understanding of the dependencies of different components involved in the evaluation process.
Healthcare systems are transformed digitally with the help of medical technology, information systems, electronic medical records, wearable and smart devices, and handheld devices. The advancement in the medical big data, along with the availability of new computational models in the field of healthcare, has enabled the caretakers and researchers to extract relevant information and visualize the healthcare big data in a new spectrum. The role of medical big data becomes a challenging task in the form of storage, required information retrieval within a limited time, cost efficient solutions in terms care, and many others. Early decision making based healthcare system has massive potential for dropping the cost of care, refining quality of care, and reducing waste and error. Scientific programming play a significant role to overcome the existing issues and future problems involved in the management of large scale data in healthcare, such as by assisting in the processing of huge data volumes, complex system modelling, and sourcing derivations from healthcare data and simulations. Therefore, to address this problem efficiently a detailed study and analysis of the available literature work is required to facilitate the doctors and practitioners for making the decisions in identifying the disease and suggest treatment accordingly. The peer reviewed reputed journals are selected for the accumulated of published research work during the period ranges from 2015-2019 (a portion of 2020 is also included). A total of 127 relevant articles (conference papers, journal papers, book section, and survey papers) are selected for the assessment and analysis purposes. The proposed research work organizes and summarizes the existing published research work based on the research questions defined and keywords identified for the search process. This analysis on the existence research work will help the doctors and practitioners to make more authentic decisions, which ultimately will help to use the study as evidence for treating patients and suggest medicines accordingly. INDEX TERMS Healthcare, big data, big data management, big data analytics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.