ObjectiveEosinophil predominant inflammation characterises histological features of eosinophilic oesophagitis (EoE). Endoscopy with biopsy is currently the only method to assess oesophageal mucosal inflammation in EoE. We hypothesised that measurements of luminal eosinophil-derived proteins would correlate with oesophageal mucosal inflammation in children with EoE.DesignThe Enterotest diagnostic device was used to develop an oesophageal string test (EST) as a minimally invasive clinical device. EST samples and oesophageal mucosal biopsies were obtained from children undergoing upper endoscopy for clinically defined indications. Eosinophil-derived proteins including eosinophil secondary granule proteins (major basic protein-1, eosinophil-derived neurotoxin, eosinophil cationic protein, eosinophil peroxidase) and Charcot–Leyden crystal protein/galectin-10 were measured by ELISA in luminal effluents eluted from ESTs and extracts of mucosal biopsies.ResultsESTs were performed in 41 children with active EoE (n=14), EoE in remission (n=8), gastro-oesophageal reflux disease (n=4) and controls with normal oesophagus (n=15). EST measurement of eosinophil-derived protein biomarkers significantly distinguished between children with active EoE, treated EoE in remission, gastro-oesophageal reflux disease and normal oesophagus. Levels of luminal eosinophil-derived proteins in EST samples significantly correlated with peak and mean oesophageal eosinophils/high power field (HPF), eosinophil peroxidase indices and levels of the same eosinophil-derived proteins in extracts of oesophageal biopsies.ConclusionsThe presence of eosinophil-derived proteins in luminal secretions is reflective of mucosal inflammation in children with EoE. The EST is a novel, minimally invasive device for measuring oesophageal eosinophilic inflammation in children with EoE.
ObjectiveThe microbiome has been implicated in the pathogenesis of a number of allergic and inflammatory diseases. The mucosa affected by eosinophilic esophagitis (EoE) is composed of a stratified squamous epithelia and contains intraepithelial eosinophils. To date, no studies have identified the esophageal microbiome in patients with EoE or the impact of treatment on these organisms. The aim of this study was to identify the esophageal microbiome in EoE and determine whether treatments change this profile. We hypothesized that clinically relevant alterations in bacterial populations are present in different forms of esophagitis.DesignIn this prospective study, secretions from the esophageal mucosa were collected from children and adults with EoE, Gastroesophageal Reflux Disease (GERD) and normal mucosa using the Esophageal String Test (EST). Bacterial load was determined using quantitative PCR. Bacterial communities, determined by 16S rRNA gene amplification and 454 pyrosequencing, were compared between health and disease.ResultsSamples from a total of 70 children and adult subjects were examined. Bacterial load was increased in both EoE and GERD relative to normal subjects. In subjects with EoE, load was increased regardless of treatment status or degree of mucosal eosinophilia compared with normal. Haemophilus was significantly increased in untreated EoE subjects as compared with normal subjects. Streptococcus was decreased in GERD subjects on proton pump inhibition as compared with normal subjects.ConclusionsDiseases associated with mucosal eosinophilia are characterized by a different microbiome from that found in the normal mucosa. Microbiota may contribute to esophageal inflammation in EoE and GERD.
A growing number of studies implicate the microbiome in the pathogenesis of intestinal inflammation. Previous work has shown that adults with esophagitis related to gastroesophageal reflux disease have altered esophageal microbiota compared to those who do not have esophagitis. In these studies, sampling of the esophageal microbiome was accomplished by isolating DNA from esophageal biopsies obtained at the time of upper endoscopy. The aim of the current study was to identify the esophageal microbiome in pediatric individuals with normal esophageal mucosa using a minimally invasive, capsule-based string technology, the Enterotest™. We used the proximal segment of the Enterotest string to sample the esophagus, and term this the “Esophageal String Test” (EST). We hypothesized that the less invasive EST would capture mucosal adherent bacteria present in the esophagus in a similar fashion as mucosal biopsy. EST samples and mucosal biopsies were collected from children with no esophageal inflammation (n = 15) and their microbiome composition determined by 16S rRNA gene sequencing. Microbiota from esophageal biopsies and ESTs produced nearly identical profiles of bacterial genera and were different from the bacterial contents of samples collected from the nasal and oral cavity. We conclude that the minimally invasive EST can serve as a useful device for study of the esophageal microbiome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.