Human noroviruses (HuNoVs) are a major cause of foodborne gastroenteritis worldwide. Because they do not grow in cell culture and there is no animal model for HuNoVs, pathogenesis studies have been hampered. Thus, little is known about their replication strategies or induction of neutralizing antibodies.The limited information on their pathogenesis is from human volunteer studies of HuNoV infections in which villus atrophy in duodenal biopsies and presence of malabsorptive diarrhea were described (1,7,8). No information is available on lesions in other portions of the intestines of these volunteers (9). Intestinal transplant pediatric patients that were diagnosed with HuNoV infection developed secretory or osmotic diarrhea (19,20,31). These patients had prolonged diarrhea (17 to 326 days) due to immunosuppressive therapy. The detection of HuNoV RNA and the clinical symptoms remitted after reduction of the immunosuppressive therapy. Usually in exposed individuals, histologic lesions correlate with diarrhea, but in one report, lesions in volunteers who did not show clinical symptoms were described (42). There are also numerous reports of asymptomatic individuals who were infected with HuNoVs and shed virus in the feces (11, 28).Most past attempts to study these viruses in an animal model may have failed because (i) the human strains that were used were not closely related to the host animal NoV strains, (ii) sensitive detection techniques were lacking, and finally (iii) the role of histo-blood group antigen (HBGA) phenotypes in differential susceptibility of the host was unrecognized. Our goal was to adapt a HuNoV strain to replicate in the gnotobiotic (Gn) pig to develop an animal model for the study of HuNoV pathogenesis. Gnotobiotic pigs are good models for human enteric diseases (40) because pigs resemble humans in their gastrointestinal anatomy, physiology, and immune responses. The Gn pigs are immunocompetent at birth, but they lack maternal antibodies and previous or ongoing exposure to microbial agents, including caliciviruses.Recently, viral RNA genetically similar to that of human NoV GII (65 to 71% amino acid sequence identity in the capsid gene) was detected in pigs in Japan (46, 47) and Europe (22,48). In U.S. swine, our laboratory detected both viral RNA and virus particles similar to GII HuNoV (70% sequence identity in the capsid region) which were infectious for Gn pigs (50). Our approach to infect Gn pigs with a HuNoV was to use a GII strain that is closely related genetically to the identified GII porcine NoVs and that has a broad HBGA binding pattern because little information or reagents are available for pig HBGA. Additionally, we used sensitive assays and reagents including reverse transcription (RT)-PCR to detect fecal shedding, virus-like particles (VLPs) for serological assays, and antisera to these VLPs for antigen enzyme-linked immunosor-
Chronic ingestion of high concentrations of hexavalent chromium [Cr(VI)] in drinking water induces intestinal tumors in mice. To investigate the mode of action (MOA) underlying these tumors, a 90-day drinking water study was conducted using similar exposure conditions as in a previous cancer bioassay, as well as lower (heretofore unexamined) drinking water concentrations. Tissue samples were collected in mice exposed for 7 or 90 days and subjected to histopathological, biochemical, toxicogenomic, and toxicokinetic analyses. Described herein are the results of toxicokinetic, biochemical, and pathological findings. Following 90 days of exposure to 0.3–520 mg/l of sodium dichromate dihydrate (SDD), total chromium concentrations in the duodenum were significantly elevated at ≥ 14 mg/l. At these concentrations, significant decreases in the reduced-to-oxidized glutathione ratio (GSH/GSSG) were observed. Beginning at 60 mg/l, intestinal lesions were observed including villous cytoplasmic vacuolization. Atrophy, apoptosis, and crypt hyperplasia were evident at ≥ 170 mg/l. Protein carbonyls were elevated at concentrations ≥ 4 mg/l SDD, whereas oxidative DNA damage, as assessed by 8-hydroxydeoxyguanosine, was not increased in any treatment group. Significant decreases in the GSH/GSSG ratio and similar histopathological lesions as observed in the duodenum were also observed in the jejunum following 90 days of exposure. Cytokine levels (e.g., interleukin-1β) were generally depressed or unaltered at the termination of the study. Overall, the data suggest that Cr(VI) in drinking water can induce oxidative stress, villous cytotoxicity, and crypt hyperplasia in the mouse intestine and may underlie the MOA of intestinal carcinogenesis in mice.
Herpes simplex virus type 1 (HSV-1) mutants lacking the c 1 34.5 neurovirulence loci are promising agents for treating malignant glioma. Arming oncolytic HSV-1 to express immunostimulatory genes may potentiate therapeutic efficacy. We have previously demonstrated improved preclinical efficacy, biodistribution, and safety of M002, a c 1 34.5-deleted HSV-1 engineered to express murine IL-12. Herein, we describe the safety and biodistribution of M032, a c 1 34.5-deleted HSV-1 virus that expresses human IL-12 after intracerebral administration to nonhuman primates, Aotus nancymae. Cohorts were administered vehicle, 10 6 , or 10 8 pfu of M032 on day 1 and subjected to detailed clinical observations performed serially over a 92-day trial. Animals were sacrificed on days 3, 31, and 91 for detailed histopathologic assessments of all organs and to isolate and quantify virus in all organs. With the possible exception of one animal euthanized on day 16, neither adverse clinical signs nor sex-or dose-related differences were attributed to M032. Elevated white blood cell and neutrophil counts were observed in virus-injected groups on day 3, but no other significant changes were noted in clinical chemistry or coagulation parameters. Minimal to mild inflammation and fibrosis detected, primarily in meningeal tissues, in M032-injected animals on days 3 and 31 had mostly resolved by day 91. The highest viral DNA levels were detected at the injection site and motor cortex on day 3 but decreased in central nervous system tissues over time. These data demonstrate the requisite safety of intracerebral M032 administration for consideration as a therapeutic for treating malignant brain tumors.
Since the initial report of West Nile virus in the northeastern United States in 1999, the virus has spread rapidly westward and southward across the country. In the summer of 2002, several midwestern states reported increased cases of neurologic disease and mortality associated with West Nile virus infection in various native North American owl species. This report summarizes the clinical and pathologic findings for 13 captive and free-ranging owls. Affected species were all in the family Strigidae and included seven snowy owls (Nyctea scandiaca), four great-horned owls (Bubo virginianus), a barred owl (Strix varia), and a short-eared owl (Asio flammeus). Neurologic signs identified included head tilt, uncoordinated flight, paralysis, tremors, and seizures. Owls that died were screened for flaviviral proteins by immunohistochemical staining of formalin-fixed tissues, followed by specific polymerase chain reaction assay to confirm West Nile virus with fresh tissues when available. Microscopic lesions were widespread, involving brain, heart, liver, kidney, and spleen, and were typically nonsuppurative with infiltration by predominantly lymphocytes and plasma cells. Lesions in owls were much more severe than those previously reported in corvids such as crows, which are considered highly susceptible to infection and are routinely used as sentinel species for monitoring for the presence and spread of West Nile virus. This report is the first detailed description of the pathology of West Nile virus infection in Strigiformes and indicates that this bird family is susceptible to natural infection with West Nile virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.