This paper presents the design, implementation and control of a new piezoelectrically actuated compliant micromanipulator dedicated to multiscale, precision and reliable operations. To begin with, the manipulator is devised to obtain multi degrees of freedom and large workspace ranges. Two-stage amplification mechanisms (consists of the leverage and the rocker mechanisms) and composite parallelogram mechanisms are combined to construct the lower microstage. Meanwhile, the structure design of the upper dual-driven microgripper is based on the bridge-type mechanism and the unilateral parallelogram mechanism. Through finite-element analysis, the structural parameters of the micromanipulator are optimized and the structural interaction performances are examined. Moreover, a cooperative control strategy is proposed to achieve the synchronous control of the motion trajectory, the gripper position and the contact force. Precision motion control in terms of the hysteresis phenomenon and system disturbances is ensured by using an adaptive sliding mode control (SMC). In particular, an improved nonsymmetrical Bouc–Wen model and a fuzzy regulator are proposed in the SMC. Several experimental investigations are conducted to validate the effectiveness of the developed micromanipulator by performing transferring operations of a micro-object. Experimental results demonstrate that the micromanipulator presents good characteristics, and precision and robust operation can be acquired using the cooperative controller.
Adult somatic cell cloned calves were produced by somatic cell nuclear transfer prepared by fusion of cultured ear fibroblast from a Holstein cow into enucleated oocytes of Luxi Yellow cow. In order to determinate the source of mitochondrial DNA of cloned calves, we designed the breed-specific PCR primers by aligning the known D-loop sequences of Bos taurus and analyzed the displacement loop sequences of five live cloned calves by breed-specific primers PCR. The results demonstrated that mtDNA originated from Holstein breed and that from Luxi breed co-exist in all five live calves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.