After more than a century of research the typical growth pattern of a tree was thought to be fairly well understood. Following germination height growth accelerates for some time, then increment peaks and the added height each year becomes less and less. The cross sectional area (basal area) of the tree follows a similar pattern, but the maximum basal area increment occurs at some time after the maximum height increment. An increase in basal area in a tall tree will add more volume to the stem than the same increase in a short tree, so the increment in stem volume (or mass) peaks very late. Stephenson et al. challenge this paradigm, and suggest that mass increment increases continuously. Their analysis methods however are a textbook example of the 'ecological fallacy', and their conclusions therefore unsupported.
Summary The relationship between species richness and ecosystem function, as measured by productivity or biomass, is of long‐standing theoretical and practical interest in ecology. This is especially true for forests, which represent a majority of global biomass, productivity and biodiversity. Here, we conduct an analysis of relationships between tree species richness, biomass and productivity in 25 forest plots of area 8–50 ha from across the world. The data were collected using standardized protocols, obviating the need to correct for methodological differences that plague many studies on this topic. We found that at very small spatial grains (0.04 ha) species richness was generally positively related to productivity and biomass within plots, with a doubling of species richness corresponding to an average 48% increase in productivity and 53% increase in biomass. At larger spatial grains (0.25 ha, 1 ha), results were mixed, with negative relationships becoming more common. The results were qualitatively similar but much weaker when we controlled for stem density: at the 0.04 ha spatial grain, a doubling of species richness corresponded to a 5% increase in productivity and 7% increase in biomass. Productivity and biomass were themselves almost always positively related at all spatial grains. Synthesis. This is the first cross‐site study of the effect of tree species richness on forest biomass and productivity that systematically varies spatial grain within a controlled methodology. The scale‐dependent results are consistent with theoretical models in which sampling effects and niche complementarity dominate at small scales, while environmental gradients drive patterns at large scales. Our study shows that the relationship of tree species richness with biomass and productivity changes qualitatively when moving from scales typical of forest surveys (0.04 ha) to slightly larger scales (0.25 and 1 ha). This needs to be recognized in forest conservation policy and management.
Aim To examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes. Location Global. Time period Early 21st century. Major taxa studied Woody plants. Methods We examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees ≥ 1 cm diameter at breast height (DBH), all trees ≥ 60 cm DBH, and those rank‐ordered largest trees that cumulatively comprise 50% of forest biomass. Results Averaged across these 48 forest plots, the largest 1% of trees ≥ 1 cm DBH comprised 50% of aboveground live biomass, with hectare‐scale standard deviation of 26%. Trees ≥ 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass (r2 = .62, p < .001). Large‐diameter trees in high biomass forests represented far fewer species relative to overall forest richness (r2 = .45, p < .001). Forests with more diverse large‐diameter tree communities were comprised of smaller trees (r2 = .33, p < .001). Lower large‐diameter richness was associated with large‐diameter trees being individuals of more common species (r2 = .17, p = .002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude (r2 = .46, p < .001), as did forest density (r2 = .31, p < .001). Forest structural complexity increased with increasing absolute latitude (r2 = .26, p < .001). Main conclusions Because large‐diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large‐diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.
Aims With the aim of understanding why some of the world's forests exhibit higher tree beta diversity values than others, we asked: (1) what is the contribution of environmentally related variation versus pure spatial and local stochastic variation to tree beta diversity assessed at the forest plot scale; (2) at what resolution are these beta‐diversity components more apparent; and (3) what determines the variation in tree beta diversity observed across regions/continents? Location World‐wide. Methods We compiled an unprecedented data set of 10 large‐scale stem‐mapping forest plots differing in latitude, tree species richness and topographic variability. We assessed the tree beta diversity found within each forest plot separately. The non‐directional variation in tree species composition among cells of the plot was our measure of beta diversity. We compared the beta diversity of each plot with the value expected under a null model. We also apportioned the beta diversity into four components: pure topographic, spatially structured topographic, pure spatial and unexplained. We used linear mixed models to interpret the variation of beta diversity values across the plots. Results Total tree beta diversity within a forest plot decreased with increasing cell size, and increased with tree species richness and the amount of topographic variability of the plot. The topography‐related component of beta diversity was correlated with the amount of topographic variability but was unrelated to its species richness. The unexplained variation was correlated with the beta diversity expected under the null model and with species richness. Main conclusions Because different components of beta diversity have different determinants, comparisons of tree beta diversity across regions should quantify not only overall variation in species composition but also its components. Global‐scale patterns in tree beta diversity are largely coupled with changes in gamma richness due to the relationship between the latter and the variation generated by local stochastic assembly processes.
Summary1. An important goal in plant community ecology is to understand how species traits determine demographic performance. Several functional traits have been shown to correlate with growth and mortality rates in trees, but less is known about how the relationships between functional traits and demographic rates change with tree size. 2. We examined the associations of functional traits with growth and mortality across 43 tree species in the Fushan 25-ha subtropical rain forest plot in northern Taiwan. We estimated the 95th percentile maximum stem diameter, wood density and six leaf functional traits (leaf area, specific leaf area, thickness, succulence, and mass-based nitrogen and phosphorus contents) obtained from leaves on juvenile and adult individuals of each species. 3. To quantify size-dependent changes in growth and mortality, relative growth rate (RGR) and mortality were estimated as a function of stem diameter using hierarchical Bayesian models. These rate estimates were then correlated with functional traits at a range of stem diameter classes. 4. Relationships between functional traits and demographic rates varied with tree size. Maximum size was positively correlated with RGR across a wide range of tree sizes. Wood density was negatively correlated with RGR and mortality for small-sized trees. Leaf traits such as leaf area and specific leaf area at juvenile and adult stages were associated more strongly with demographic rates for corresponding sizes than from other sizes. 5. Synthesis. The observed size-dependent changes in the trait-demography relationships are possibly due to the effects of developmental and environmental changes with increasing tree size. The underlying effects of functional traits on demographic performance vary with tree size, and this should influence dynamics in a tree community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.