The milestone of GW 170817-GRB 170817A-AT 2017gfo 1 has shown that gravitational wave (GW) is produced during the merger of neutron star-neutron star/black hole and that in electromagnetic (EM) wave a gamma-ray burst (GRB) and a kilonovae (KN) are generated in sequence after the merger. Observationally, however, EM property during a merger is still unclear. Here we report a peculiar precursor in a KN-associated long GRB 211211A. The duration of the precursor is ∼ 0.2 s, and the waiting time between the precursor and the main emission (ME) of the burst is ∼ 1 s, which is about the same as the time interval between GW 170817 and GRB 170817A. Quasi-Periodic Oscillations (QPO) with frequency ∼22 Hz (at > 5σ significance) are found throughout the precursor, the first detection of periodic signals from any bona fide GRBs. This indicates most likely that a magnetar participated in the merger, and the precursor might be produced due to a catastrophic flare accompanying with torsional or crustal oscillations of the magnetar. The strong seed magnetic field of ∼ 10 14−15 G at the surface of the magnetar may also account for the prolonged duration of GRB 211211A. However, it is a challenge to reconcile the rather short lifetime of a magnetar
High time resolution and accuracy are of critical importance in the studies of timing analysis and time delay localization of Gamma-Ray Bursts (GRBs), Soft Gamma-ray Repeaters (SGRs) and pulsars. The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) consisting of two micro-satellites, GECAM-A and GECAM-B, launched on Dec. 10, 2020, is aimed at monitoring and locating X-ray and gamma-ray bursts all over the sky. To achieve its scientific goals, GECAM is designed to have the highest time resolution (0.1 $\mu {\rm s}$) among all GRB detectors ever flown. Here, we make a comprehensive time calibration campaign including both on-ground and on-orbit tests to derive not only the relative time accuracy of GECAM satellites and detectors, but also the absolute time accuracy of GECAM-B. Using the on-ground calibration with a $\rm ^{22}Na$ radioactive source, we find that the relative time accuracy between GECAM-A and GECAM-B is about 0.15 $\mu {\rm s}$ (1σ). To measure the relative time accuracy between all detectors of a single GECAM satellite, cosmic ray events detected on orbit are utilized since they could produce many secondary particles simultaneously record by multiple detectors. We find that the relative time accuracy among all detectors onboard GECAM-B is about 0.12 $\mu {\rm s}$ (1σ). Finally, we use the novel Li-CCF method to perform the absolute time calibration with Crab pulsar and SGR J1935+2154, both of which were jointly observed by GECAM-B and Fermi/GBM, and obtain that the time difference between GECAM-B and Fermi/GBM is 3.06 ± 6.04 $\mu {\rm s}$ (1σ).
Magnetars are neutron stars with an extreme magnetic field and sometimes manifest as soft gamma-ray repeaters (SGRs). SGR J1935+2154 is one of the most prolific bursters and the first confirmed source of a fast radio burst (FRB; i.e., FRB 200428). Encouraged by the discovery of the first X-ray counterpart of FRBs, the Insight-Hard X-ray Modulation Telescope (Insight-HXMT) implemented a dedicated 33-day-long Target of Opportunity observation of SGR J1935+2154 since 2020 April 28. With the HE, ME, and LE telescopes, Insight-HXMT provides a thorough monitoring of burst activity evolution of SGR J1935+2154, in a very broad energy range (1–250 keV) with high temporal resolution and high sensitivity, resulting in a unique valuable data set for detailed studies of SGR J1935+2154. In this work, we conduct a comprehensive analysis of this observation, including detailed burst search, identification, and temporal analyses. After carefully removing false triggers, we find a total of 75 bursts from SGR J1935+2154, out of which 70 are single pulsed. The maximum burst rate is about 56 bursts day−1. Both the burst duration and the waiting time between two successive bursts follow lognormal distributions, consistent with previous studies. We also find that bursts with longer duration (some are multipulsed) tend to occur during the period with relatively high burst rate. There is no correlation between the waiting time and the fluence or duration of either the former or latter burst. It also seems that there is no correlation between burst duration and hardness ratio, in contrast to some previous reports. In addition, we do not find any X-ray burst associated with any reported radio bursts except for FRB 200428.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.