Infertility is an area of increasing in life science research. Although follicular maturation disorders and anovulation are the primary causations of infertility, its molecular mechanism is not well understood. Recent research has shown that microRNAs (miRNAs) might play an important role in the regulation of ovarian follicle development and maturation. In this study, the expression of miRNAs in metaphase I (MI) oocytes treated with or without insulin-like growth factor 1 (IGF-1) was observed by microRNA microarray analysis. Results show that 145 miRNAs were up-regulated and 200 miRNAs were down-regulated in MI oocytes after IGF-1 treatment. MiR-133b, which was up-regulated more than 30-fold, was chosen for further research. As a potential target of miR133b, transgelin 2 (TAGLN2) gene was down-regulated, at both transcription and translation levels, in miR-133b- over-expressed 293T cells, but TAGLN2 was up-regulated when the expression of miR-133b was inhibited. Furthermore, the expression level of TAGLN2 in the ovaries of 8-week- old mice was higher than that observed in 4-week-old mice. Immunofluorescence experiments showed that TAGLN2 was located in the cytoplasm. In general, our results indicate that miR-133b may play important roles in the growth and maturation of oocytes by regulating its potential target, TAGLN2, at both transcription and translation levels. Therefore, our research provides a potential new target for infertility therapy.
Abstract. Radiotherapy is used in >50% of patients during the course of cancer treatment both as a curative modality and for palliation. However, radioresistance is a major obstacle to the success of radiation therapy and contributes significantly to tumor recurrence and treatment failure, highlighting the need for the development of novel radiosensitizers that can be used to overcome tumor radioresistance and, thus, improve the efficacy of radiotherapy. Previous studies indicated that resveratrol (RV) may sensitize tumor cells to chemotherapy and ionizing radiation (IR). However, the mechanisms by which RV increases the radiation sensitivity of cancer cells have not been well characterized. Here, we show that RV treatment enhances IR-induced cell killing in non-small cell lung cancer (NSCLC) cells through an apoptosis-independent mechanism. Further studies revealed that the percentage of senescence-associated β-galactosidase (SA-β-gal)-positive senescent cells was markedly higher in cells treated with IR in combination with RV compared with cells treated either with IR or RV alone, suggesting that RV treatment enhances IR-induced premature senescence in lung cancer cells. Comet assays demonstrate that RV and IR combined treatment causes more DNA double-strand breaks (DSBs) than IR or RV treatment alone. DCF-DA staining and flow cytometric analyses demonstrate that RV and IR combined treatment leads to a significant increase in ROS production in irradiated NSCLC cells. Furthermore, our investigation show that inhibition of ROS production by N-acetyl-cysteine attenuates RV-induced radiosensitization in lung cancer cells. Collectively, these results demonstrate that RV-induced radiosensitization is associated with significant increase of ROS production, DNA-DSBs and senescence induction in irradiated NSCLC cells, suggesting that RV treatment may sensitize lung cancer cells to radiotherapy via enhancing IR-induced premature senescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.