New generation wearable devices require mechanically compliant strain sensors with a high sensitivity in a full detecting range. Herein, novel 2D end-to-end contact conductive networks of multi-walled carbon nanotubes (MWCNTs) were designed and realized in an ethylene-α-octene block copolymer (OBC) matrix. The prepared strain sensor showed a high gauge factor (GF) of 248 even at a small strain (5%) and a linear resistance response throughout the whole strain range. The sensors also exhibited very good stretchability up to 300% and high cycling durability. This novel design solved the intrinsic problem of sensors based on carbon nanotube bundles, i.e., a long sliding phase before the disconnection of CNTs in a cost-effective and scalable way. This study rationalizes the 2D end-to-end contact concept to improve the sensitivity of the existing sensors and has great potential to be used in a wide variety of polymer based sensors.
Indium oxide (InO) hollow microspheres were prepared using yeast as a bio-template with the aid of a precipitation method. The yeast provided a solid frame for the deposition of In(OH) to form the precursor. The resulting InO hollow microspheres were obtained by calcining the precursor at 650 °C. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N adsorption-desorption isotherms and UV-Vis diffuse reflectance spectroscopy. The results showed that the diameter of the InO hollow microspheres was about 2.0-3.0 μm and the spherical shells were composed of InO nanoparticles with a size of ∼20 nm. The BET specific surface area of the sample was 19.23 m g. The photoelectrocatalytic test results showed that the photoelectrocatalytic degradation efficiency of methylene blue (MB) using InO hollow microspheres as catalysts under visible light irradiation and a certain voltage could reach above 95% after 4 hours, much higher than that of only photodegradation. The enhanced photoelectrocatalytic activity could be attributed to the hydroxyl radicals HO˙ produced by the light irradiation reaction process which could oxidize the electron donors and were beneficial to reducing the recombination of electrons and holes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.