Electronic band structure and optical properties of Cr-doped ZnO were studied using the density functional method within the generalized-gradient approximation. Three configurations with the substitution of Zn by one and two Cr atoms in different positions were considered. For the pure ZnO, the Fermi level locates at the valence band maximum, while it shifts to the conduction band and exhibits metal-like characteristic after Cr atoms are introduced into the ZnO supercell. The calculated optical properties indicate that the optical energy gap is increased after Cr doping. More importantly, strong absorption in the visible-light region is found, which originates from the intraband transition of the Cr 3d bands and the conduction bands. Our calculations provide electronic structure evidence that, in addition to usage as short-wavelength optoelectronic devices, the Cr-doped ZnO system could be a potential candidate for photoelectrochemical application due to the increase in its photocatalytic activity.
The electrical and magnetic properties of Zn-doped Fe(3)O(4) at different doping concentrations of Zn have been investigated using a density functional method with generalized-gradient approximation corrected for on-site Coulombic interactions. The electronic structure calculation predicts that Zn(x)Fe(3-x)O(4) (0 ≤x≤ 0.875) is half-metallic with a full spin polarization. The hopping carrier concentration of Zn(x)Fe(3-x)O(4) decreases with increasing x, which indicates a distinct increase in the resistivity. The saturation magnetization of Zn(x)Fe(3-x)O(4) increases evidently with increasing x from x = 0 to x = 0.75 (i.e. from 4.0 to 8.3 μ(B)/f.u.) and then decreases rapidly to zero at x = 1. The robust half-metallicity, large tunability of electrical and magnetic properties of a Zn doped Fe(3)O(4) system make it a promising functional material for spintronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.