Group A streptococcus (GAS) is a gram-positive bacterial pathogen that causes various suppurative infections and nonsuppurative sequelae. Since the late 1980s, streptococcal toxic-shock like syndrome (STSS) and severe invasive GAS infections have been reported globally. Here we sequenced the genome of serotype M3 strain SSI-1, isolated from an STSS patient in Japan, and compared it with those of other GAS strains. The SSI-1 genome is composed of 1,884,275 bp, and 1.7 Mb of the sequence is highly conserved relative to strain SF370 (serotype M1) and MGAS8232 (serotype M18), and almost completely conserved relative to strain MGAS315 (serotype M3). However, a large genomic rearrangement has been shown to occur across the replication axis between the homologous rrn-comX1 regions and between two prophage-coding regions across the replication axis. A total of 1 Mb of chromosomal DNA is inverted across the replication axis. Interestingly, the recombinations between the prophage regions are within the phage genes, and the genes encoding superantigens and mitogenic factors are interchanged between two prophages. This genomic rearrangement occurs in 65% of clinical isolates (64/94) collected after 1990, whereas it is found in only 25% of clinical isolates (7/28) collected before 1985. These observations indicate that streptococcal phages represent important plasticity regions in the GAS chromosome where recombination between homologous phage genes can occur and result not only in new phage derivatives, but also in large chromosomal rearrangements.
Porphyromonas gingivalis fimbriae are critical for the promotion of bacterial infection. The fimA gene encoding fimbrillin, a subunit of fimbriae, has been classified into five genotypes (types I to V) based on their nucleotide sequences. Using a fimA type-specific PCR assay, our previous study demonstrated a close relationship between P. gingivalis possessing type II and type IV fimA genes and adult periodontitis. In that study, some clinical specimens were found to be positive for both types I- and II- fimA specific primers, likely due to the coexistence of two clonal types or a single clone of an unknown genotype in the samples. In the present study, we cloned a new variant of the fimA gene, designated as type Ib fimA, from P. gingivalis HG1691. The nucleotide sequence of the cloned fimA gene showed a 97.1% homology with that of type I fimA, indicating it as a clonal variant of type I fimA. Organisms with type Ib fimA were detected in 13.5% of periodontitis patients and in 2.9% of periodontal healthy adults. Statistical analysis revealed a strong relationship between periodontitis and specific fimA types such as type Ib [odds ratio (OR) 6.51], type II (OR 77.8), and type IV (OR 7.54). Moreover, type Ib fimA-organisms were also found to be related to periodontitis in Down's syndrome (OR 1.91) and mentally disabled populations (OR 4.00). These findings suggest that P. gingivalis with type Ib fimA is closely associated with the progression of periodontitis, similar to organisms with type II and IV fimA.
SummarySilkworms are killed by injection of pathogenic bacteria, such as Staphylococcus aureus and Streptococcus pyogenes , into the haemolymph. Gene disruption mutants of S. aureus whose open reading frames were previously uncharacterized and that are conserved among bacteria were examined for their virulence in silkworms. Of these 100 genes, three genes named cvfA , cvfB , and cvfC were required for full virulence of S. aureus in silkworms. Haemolysin production was decreased in these mutants. The cvfA and cvfC mutants also had attenuated virulence in mice. S. pyogenes cvfA -disrupted mutants produced less exotoxin and had attenuated virulence in both silkworms and mice. These results indicate that the silkworm-infection model is useful for identifying bacterial virulence genes.
Fimbriae of Porphyromonas gingivalis, a periodontopathogen, play an important role in its adhesion to and invasion of host cells. The fimA genes encoding fimbrillin (FimA), a subunit protein of fimbriae, have been classified into five types, types I to V, based on nucleotide sequences. We previously reported that P. gingivalis with type II fimA was strongly associated with adult periodontitis. In the present study, we compared the abilities of recombinant FimA (rFimA) types I to V to adhere to and invade human gingival fibroblasts (HGF) and a human epithelial cell line (HEp-2 cells) by using rFimA-conjugated microspheres (rFimA-MS). There were no significant differences in the abilities of the rFimA-MS to adhere to HGF; however, the adhesion of type II rFimA-MS to HEp-2 cells was significantly greater than those of other types of rFimA-MS. We also observed that type II rFimA-MS invaded epithelial cells and accumulated around the nuclei. These adhesion and invasion characteristics were eliminated by the addition of antibodies to type II rFimA and ␣51-integrin. In contrast, Arg-Gly-Asp-Ser peptide and a synthetic peptide of proline-rich protein C had negligible inhibitory effects. Furthermore, P. gingivalis strain HW24D1 with type II fimA adhered to cells and invaded them more than strains with other fimA genotypes. These results suggest that type II FimA can bind to epithelial cells most efficiently through specific host receptors.
Cumulative evidence indicates that bacterial adherence to mucosal and tooth surfaces as well as bacterial coaggregation are essential steps for colonization of various oral bacterial species. Bacterial fimbriae have been shown to play an important role in the interaction between bacteria and host cells or among bacterial cells. The properties of fimbriae from selected species of oral bacteria are discussed in terms of virulence traits and ecological significance. Among others, Porphyromonas gingivalis fimbriae have been most extensively studied. The fimbrial structure is composed of 41-kDa fimbrillin proteins. DNA sequencing of the fimbrillin gene (fimA) from nine strains of P. gingivalis suggests intraspecies variation in the structure of fimA, while retaining common immunochemical specificities. P. gingivalis fimbriae exhibit a wide variety of biological activities including immunogenicity, binding to various host proteins, stimulation of cytokine production and promotion of bone resorption, Actinobacillus actinomycetemcomitans also possesses fimbriae; however, little is known concerning their chemical, genetical, and biological properties. Fimbriae of Prevotella intermedia are shown to induce hemagglutination reaction, while those of Prevotella loescheii are found to cause coaggregation with other bacteria, i.e., Actinomyces viscosus and sanguis streptococci. Fimbriae from gram-positive oral bacteria such as oral Actinomyces and sanguis streptococci are described. These fimbriae may participate in coaggregation, binding to saliva-coated hydroxyapatite or glycoprotein of the surface layer of oral epithelial cells. Taken together, fimbriae are key components in cell-to-surface and cell-to-cell adherence of oral bacteria and pathogenesis of some oral and systemic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.