The zinc-finger transcription factor GATA-1 (previously known as GF-1, NF-E1 or Eryf 1 binds to GATA consensus elements in regulatory regions of the alpha- and beta-globin gene clusters and other erythroid cell-specific genes. Analysis of the effects of mutations in GATA-binding sites in cell culture and in binding assays in vitro, as well as transactivation studies with GATA-1 expression vectors in heterologous cells, have provided indirect evidence that this factor is involved in the activation of globin and other genes during erythroid cell maturation. GATA-1 is also expressed in megakaryocytes and mast cells, but not in other blood cell lineages or in non-haemopoietic cells. To investigate the role of this factor in haematopoiesis in vivo, we disrupted the X-linked GATA-1 gene by homologous recombination in a male (XY) murine embryonic stem cell line and tested the GATA-1-deficient cells for their ability to contribute to different tissues in chimaeric mice. The mutant embryonic stem cells contributed to all non-haemopoietic tissues tested and to a white blood cell fraction, but failed to give rise to mature red blood cells. This demonstrates that GATA-1 is required for the normal differentiation of erythroid cells, and that other GATA-binding proteins cannot compensate for its absence.
Purpose: Epidermal growth factor receptor (EGFR) mutations related to gefitinib responsiveness in non-small cell lung cancer have been found recently. Detection of EGFR mutations has become an important issue for therapeutic decision-making in non-small cell lung cancer.Experimental Design: Mutational analysis of the kinase domain of EGFR coding sequence was done on 101 fresh frozen tumor tissues from patients without prior gefitinib treatment and 16 paraffin-embedded tumor tissues from patients treated with gefitinib. Detection of phosphorylated EGFR by immunoblot was also done on frozen tumor tissues.Results: The 101 non-small cell lung cancer tumor specimens include 69 adenocarcinomas, 24 squamous cell carcinomas, and 8 other types of non-small cell lung cancers. Mutation(s) in the kinase domain (exon 18 to exon 21) of the EGFR gene were identified in 39 patients. All of the mutations occurred in adenocarcinoma, except one that was in an adenosquamous carcinoma. The mutation rate in adenocarcinoma was 55% (38 of 69). For the 16 patients treated with gefitinib, 7 of the 9 responders had EGFR mutations, and only 1 of the 7 nonresponders had mutations, which included a nonsense mutation. The mutations seem to be complex in that altogether 23 different mutations were observed, and 9 tumors carried 2 mutations.Conclusions: Data from our study would predict a higher gefitinib response rate in lung adenocarcinoma patients in Chinese and, possibly, other East Asian populations. The tight association with adenocarcinoma and the high frequency of mutations raise the possibility that EGFR mutations play an important role in the tumorigenesis of adenocarcinoma of lung, especially in East Asians.
SUMMARY IκB kinase β (IKKβ) is involved in tumor development and progression through activation of the nuclear factor (NF)–κB pathway. However, the molecular mechanism that regulates IKKβ degradation remains largely unknown. Here, we show that a Cullin 3 (CUL3)–based ubiquitin ligase, Kelch-like ECH-associated protein 1 (KEAP1), is responsible for IKKβ ubiquitination. Depletion of KEAP1 led to the accumulation and stabilization of IKKβ and to up-regulation of NF-κB–derived tumor angiogenic factors. A systematic analysis of the CUL3, KEAP1, and RBX1 genomic loci revealed a high percentage of genome loss and missense mutations in human cancers that failed to facilitate IKKβ degradation. Our results suggest that the dysregulation of KEAP1-mediated IKKβ ubiquitination may contribute to tumorigenesis.
CISD2, the causative gene for Wolfram syndrome 2 (WFS2), is a previously uncharacterized novel gene. Significantly, the CISD2 gene is located on human chromosome 4q, where a genetic component for longevity maps. Here we show for the first time that CISD2 is involved in mammalian life-span control. Cisd2 deficiency in mice causes mitochondrial breakdown and dysfunction accompanied by autophagic cell death, and these events precede the two earliest manifestations of nerve and muscle degeneration; together, they lead to a panel of phenotypic features suggestive of premature aging. Our study also reveals that Cisd2 is primarily localized in the mitochondria and that mitochondrial degeneration appears to have a direct phenotypic consequence that triggers the accelerated aging process in Cisd2 knockout mice; furthermore, mitochondrial degeneration exacerbates with age, and the autophagy increases in parallel to the development of the premature aging phenotype. Additionally, our Cisd2 knockout mouse work provides strong evidence supporting an earlier clinical hypothesis that WFS is in part a mitochondria-mediated disorder; specifically, we propose that mutation of CISD2 causes the mitochondriamediated disorder WFS2 in humans. Thus, this mutant mouse provides an animal model for mechanistic investigation of Cisd2 protein function and help with a pathophysiological understanding of WFS2.[Keywords: Cisd2; Wolfram syndrome 2; autophagy; knockout mice; mitochondria; premature aging] Supplemental material is available at http://www.genesdev.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.