Lung squamous cell carcinoma (LUSC) accounts for a significant proportion of lung cancer and there have been few therapeutic alternatives for recurrent LUSC due to the lack of specific driver molecules. To investigate the prospective role of lncRNAs in the tumorigenesis and progression of LUSC, the aberrantly expressed lncRNAs were calculated based on The Cancer Genome Atlas RNA-seq data. Of 7589 lncRNAs with 504 LUSC cases, 884 lncRNAs were identified as being aberrantly expressed (|log2 fold change| >2 and adjusted P<0.05) by DESeq R. The top 10 lncRNAs with the highest diagnostic value were SFTA1P,LINC00968, LINC00961, LINC01572,RP1-78O14.1, FENDRR, LINC01314,LINC01272, GATA6-AS1, and MIR3945HG. In addition to the significant roles in the carcinogenesis of LUSC, several lncRNAs also played vital parts in the survival and progression of LUSC. SFTA1P, LINC01272, GATA6-AS1 and MIR3945HG were closely related to the survival time of LUSC. Furthermore, LINC01572 and LINC01314 could distinguish the LUSC at early stage from that at advanced stage. The prospective molecular assessment of key lncRNAs showed that a certain series of genes could be involved in the regulation network. Furthermore, the OncoPrint from cBioPortal indicated that 14% (69/501) LUSC cases with genetic alterations could be obtained, including amplification, deep deletion and mRNA upregulation. More interestingly, the cases with genetic alterations had a poorer survival as compared to those without alterations. Overall, the study propounds a potentiality for interpreting the pathogenesis and development of LUSC with lncRNAs, and provides a novel platform for searching for more capable diagnostic biomarkers for LUSC.
HOXA11 antisense RNA (HOXA11-AS) has been shown to be involved in tumorigenesis and development of different cancers. However, the role of HOXA11-AS in non-small cell lung cancer (NSCLC) remains unclear. In this study, we firstly explored and confirmed the expression of HOXA11-AS in NSCLC tissues and cells. Cytometry, CCK-8, cell scratch, migration, Matrigel invasion and flow cytometry assays were performed to determine the biological impact of HOXA11-AS in vitro. Furthermore, a chick embryo chorioallantoic membrane (CAM) model of NSCLC was constructed to explore the effect of HOXA11-AS on tumorigenicity and angiogenesis in vivo. Additionally, bioinformatics analyses were performed to investigate the prospective pathways of HOXA11-AS co-expressed genes. As results, HOXA11-AS was markedly highly expressed in NSCLC tissues and cells. Furthermore, the proliferation, migration, invasion, tumorigenic and angiogenic ability of NSCLC cells were all inhibited and apoptosis was induced after HOXA11-AS knock-down. HOXA11-AS RNAi also led to cell cycle arrest on G0/G1 or G2/M phase. In addition, the non-small cell lung cancer pathway might be involved in regulating the co-expressed genes of HOXA11-AS in NSCLC. These results indicate that HOXA11-AS plays pivotal roles in NSCLC and it can become a novel therapeutic direction for treating NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.