Interaction between endothelial cells and mural cells (pericytes and vascular smooth muscle) is essential for vascular development and maintenance. Endothelial cells arise from Flk1-expressing (Flk1+) mesoderm cells, whereas mural cells are believed to derive from mesoderm, neural crest or epicardial cells and migrate to form the vessel wall. Difficulty in preparing pure populations of these lineages has hampered dissection of the mechanisms underlying vascular formation. Here we show that Flk1+ cells derived from embryonic stem cells can differentiate into both endothelial and mural cells and can reproduce the vascular organization process. Vascular endothelial growth factor promotes endothelial cell differentiation, whereas mural cells are induced by platelet-derived growth factor-BB. Vascular cells derived from Flk1+ cells can organize into vessel-like structures consisting of endothelial tubes supported by mural cells in three-dimensional culture. Injection of Flk1+ cells into chick embryos showed that they can incorporate as endothelial and mural cells and contribute to the developing vasculature in vivo. Our findings indicate that Flk1+ cells can act as 'vascular progenitor cells' to form mature vessels and thus offer potential for tissue engineering of the vascular system.
Mice homozygous for the recessive mutation osteopetrosis (op) on chromosome 3 have a restricted capacity for bone remodelling, and are severely deficient in mature macrophages and osteoclasts. Both cell populations originate from a common haemopoietic progenitor. As op/op mice are not cured by transplants of normal bone marrow cells, the defects in op/op mice may be associated with an abnormal haematopoietic microenvironment rather than with an intrinsic defect in haematopoietic progenitors. To investigate the molecular and biochemical basis of the defects caused by the op mutation, we established primary fibroblast cell lines from op/op mice and tested the ability of these cell lines to support the proliferation of macrophage progenitors. We show that op/op fibroblasts are defective in production of functional macrophage colony-stimulating factor (M-CSF), although its messenger RNA (Csfm mRNA) is present at normal levels. This defect in M-CSF production and the recent mapping of the Csfm structural gene near op on chromosome 3 suggest that op is a mutation within the Csfm gene itself. We have sequenced Csfm complementary DNA prepared from op/op fibroblasts and found a single base pair insertion in the coding region of the Csfm gene that generates a stop codon 21 base pairs downstream. Thus, the op mutation is within the Csfm coding region and we conclude that the pathological changes in this mutant result from the absence of M-CSF.
Mesenchymal stem cells (MSCs) are defined as cells that undergo sustained in vitro growth and are able to give rise to multiple mesenchymal lineages. Although MSCs are already used in regenerative medicine little is known about their in vivo behavior and developmental derivation. Here, we show that the earliest wave of MSC in the embryonic trunk is generated from Sox1+ neuroepithelium but not from mesoderm. Using lineage marking by direct gfp knock-in and Cre-recombinase mediated lineage tracing, we provide evidence that Sox1+ neuroepithelium gives rise to MSCs in part through a neural crest intermediate stage. This pathway can be distinguished from the pathway through which Sox1+ cells give rise to oligodendrocytes by expression of PDGFRbeta and A2B5. MSC recruitment from this pathway, however, is transient and is replaced by MSCs from unknown sources. We conclude that MSC can be defined as a definite in vivo entity recruited from multiple developmental origins.
Preparation of specific lineages at high purities from embryonic stem (ES) cells requires both selective culture conditions and markers to guide and monitor the differentiation. In this study, we distinguished definitive and visceral endoderm by using a mouse ES cell line that bears the gfp and human IL2R alpha (also known as CD25) marker genes in the goosecoid (Gsc) and Sox17 loci, respectively. This cell line allowed us to monitor the generation of Gsc+ Sox17+ definitive endoderm and Gsc- Sox17+ visceral endoderm and to define culture conditions that differentially induce definitive and visceral endoderm. By comparing the gene expression profiles of definitive and visceral endoderm, we identified seven surface molecules that are expressed differentially in the two populations. One of the seven markers, Cxcr4, to which a monoclonal antibody is available allowed us to monitor and purify the Gsc+ population from genetically unmanipulated ES cells under the condition that selects definitive endoderm.
Bipotent mesendoderm that can give rise to both endoderm and mesoderm is an established entity from C. elegans to zebrafish. Although previous studies in mouse embryo indicated the presence of bi-potent mesendoderm cells in the organizer region, characterization of mesendoderm and its differentiation processes are still unclear. As bi-potent mesendoderm is implicated as the major precursor of definitive endoderm, its identification is also essential for exploring the differentiation of definitive endoderm. In this study, we have established embryonic stem (ES) cell lines that carry GFP gene in the goosecoid (Gsc) gene locus and have investigated the differentiation course of mesendodermal cells using Gsc expression as a marker. Our results show that mesendoderm is represented as a Gsc-GFP+E-cadherin(ECD)+PDGFRα(αR)+population and is selectively induced from ES cells under defined conditions containing either activin or nodal. Subsequently, it diverges to Gsc+ECD+αR- and Gsc+ECD-αR+ intermediates that eventually differentiate into definitive endoderm and mesodermal lineages,respectively. The presence of mesendodermal cells in nascent Gsc+ECD+αR+ population was also confirmed by single cell analysis. Finally, we show that the defined culture condition and surface markers developed in this study are applicable for obtaining pure mesendodermal cells and their immediate progenies from genetically unmanipulated ES cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.