The amplification at 13q31-q32 has been reported in not only hematopoietic malignancies but also in other solid tumors. We identified previously frequent amplification of chromosomal band 13q31-q32 in 70 cases of diffuse large B-cell lymphoma patients by conventional comparative genomic hybridization analysis. In an attempt to identify a candidate gene within this region, we used array comparative genomic hybridization and fluorescent in situ hybridization to map the 13q31-q32 amplicon. We then screened the 65 expressed sequence tags and Glypican 5 (GPC5) by reverse transcription-PCR and Northern blotting. As a result, we identified a novel gene, designated Chromosome 13 open reading frame 25 (C13orf25), which was overexpressed in B-cell lymphoma cell lines and diffuse large B-cell lymphoma patients with 13q31-q32 amplifications. However, GPC5, which has been reported to be a target gene for 13q31-q32 amplification, was truncated in one cell line, Rec1, possessing the amplification, and its expression in various cell lines with amplification at 13q31-q32 was not significantly different from that in other cell lines without amplification, suggesting that GPC5 is not likely to be the candidate gene. Additional analysis identified two major transcripts in the C13orf25 gene. The two transcripts A and B predicted open reading frames of 32 and 70-amino acid polypeptides, respectively. The former has been reported as bA121J7.2, which is conserved among species. Transcript-B also contained seven mature microRNAs in its untranslated region. These results suggest that the C13orf25 gene is the most likely candidate gene for the 13q31-q32 amplicon found in hematopoietic malignancies.
Understanding cancer pathogenesis requires knowledge of not only the specific contributory genetic mutations but also the cellular framework in which they arise and function. Here we explore the clonal evolution of a form of childhood precursor-B cell acute lymphoblastic leukemia that is characterized by a chromosomal translocation generating a TEL-AML1 fusion gene. We identify a cell compartment in leukemic children that can propagate leukemia when transplanted in mice. By studying a monochorionic twin pair, one preleukemic and one with frank leukemia, we establish the lineal relationship between these "cancer-propagating" cells and the preleukemic cell in which the TEL-AML1 fusion first arises or has functional impact. Analysis of TEL-AML1-transduced cord blood cells suggests that TEL-AML1 functions as a first-hit mutation by endowing this preleukemic cell with altered self-renewal and survival properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.