Numerous disease-causing gene mutations have been identified in proteinuric diseases, such as nephrotic syndrome and glomerulosclerosis. this report describes the results of comprehensive genetic diagnosis of Japanese patients with severe proteinuria. in addition, the report describes the clinical characteristics of patients with monogenic disease-causing mutations. We conducted comprehensive gene screening of patients who had either congenital nephrotic syndrome, infantile nephrotic syndrome, steroid-resistant nephrotic syndrome, or focal segmental glomerular sclerosis. Using targeted next-generation sequencing, 60 podocyte-related genes were screened in 230 unrelated patients with proteinuria. A retrospective review of clinical data was conducted for these patients. We detected monogenic disease-causing mutations in 30% (69 of 230) of patients among 19 of the screened genes. common genes with disease-causing mutations were WT1 (25%), NPHS1 (12%), INF2 (12%), TRPC6 (10%), and LAMB2 (9%). With various immunosuppressive or renoprotective therapies, remission of proteinuria in patients with unknown causative mutations was observed in 26% of patients, whereas only 5% of patients with monogenic disease-causing mutations exhibited complete remission. We assessed the genetic backgrounds of Japanese patients with severe proteinuria. the proportion of patients with gene defects was similar to that of other reports, but the disease-causing gene mutation frequency was considerably different.
To understand the genetics of steroid-sensitive nephrotic syndrome (SSNS), we conducted a genome-wide association study in 987 childhood SSNS patients and 3,206 healthy controls with Japanese ancestry. Beyond known associations in the HLA-DR/DQ region, common variants in NPHS1-KIRREL2 (rs56117924, P[4.94E-20, odds ratio (OR) [1.90)
Currently, there are no treatments for Alport syndrome, which is the second most commonly inherited kidney disease. Here we report the development of an exon-skipping therapy using an antisense-oligonucleotide (ASO) for severe male X-linked Alport syndrome (XLAS). We targeted truncating variants in exon 21 of the COL4A5 gene and conducted a type IV collagen α3/α4/α5 chain triple helix formation assay, and in vitro and in vivo treatment efficacy evaluation. We show that exon skipping enabled trimer formation, leading to remarkable clinical and pathological improvements including expression of the α5 chain on glomerular and the tubular basement membrane. In addition, the survival period was clearly prolonged in the ASO treated mice group. This data suggests that exon skipping may represent a promising therapeutic approach for treating severe male XLAS cases.
Background
Alport syndrome (AS) is a hereditary disease caused by mutations in COL4A3‐5 genes. Recently, comprehensive genetic analysis has become the first‐line diagnostic tool for AS. However, no reports comparing mutation identification rates between conventional sequencing and comprehensive screening have been published.
Methods
In this study, 441 patients clinically suspected of having AS were divided into two groups and compared. The initial mutational analysis method involved targeted exome sequencing using next‐generation sequencing (NGS) (n = 147, NGS group) or Sanger sequencing for COL4A3/COL4A4/COL4A5 (n = 294, Sanger group).
Results
In the NGS group, 126 patients (86%) were diagnosed with AS by NGS, while two had pathogenic mutations in other genes, NPHS1 and EYA1. Further, 239 patients (81%) were diagnosed with AS by initial analysis in the Sanger group. Thirteen patients who were negative for mutation detection in the Sanger group were analyzed by NGS; three were diagnosed with AS. Two had mutations in CLCN5 or LAMB2. The final variant detection rate was 90%.
Discussion
Our results reveal that Sanger sequencing and targeted exome sequencing have high diagnostic ability. NGS also has the advantage of detecting other inherited kidney diseases and pathogenic mutations missed by Sanger sequencing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.