Neutrophil extracellular traps (NETs) are part of the innate immune response to infections. NETs are a meshwork of DNA fibers comprising histones and antimicrobial proteins. Microbes are immobilized in NETs and encounter a locally high and lethal concentration of effector proteins. Recent studies show that NETs are formed inside the vasculature in infections and noninfectious diseases. Here we report that NETs provide a heretofore unrecognized scaffold and stimulus for thrombus formation. NETs perfused with blood caused platelet adhesion, activation, and aggregation. DNase or the anticoagulant heparin dismantled the NET scaffold and prevented thrombus formation. Stimulation of platelets with purified histones was sufficient for aggregation. NETs recruited red blood cells, promoted fibrin deposition, and induced a red thrombus, such as that found in veins. Markers of extracellular DNA traps were detected in a thrombus and plasma of baboons subjected to deep vein thrombosis, an example of inflammation-enhanced thrombosis. Our observations indicate that NETs are a previously unrecognized link between inflammation and thrombosis and may further explain the epidemiological association of infection with thrombosis.neutrophils | platelets | histones | red blood cells | chromatin
Deep vein thrombosis and pulmonary embolism are a significant health care concern, representing a major source of mortality and morbidity. In order to understand the pathophysiology of thrombogenesis and thrombus resolution, animal models are necessary. Mouse models of venous thrombosis contribute to our understanding of the initiation, propagation, and resolution of venous thrombus, as well as allow for the evaluation of new pharmaceutical approaches to prophylaxis and treatment of deep vein thrombosis. In this work we review the ferric chloride model, the inferior vena cava ligation model, the inferior vena cava stenosis models, and the electrolytic inferior vena cava model and compare their advantages and disadvantages.
Thrombosis and inflammation are closely related. However, the response of the vein wall to venous thrombosis has been poorly documented. This study examines the hypothesis that venous thrombosis is associated with an inflammatory response in the vein wall. In a rat model of inferior vena caval thrombosis, vein wall was temporally examined for inflammation by assessment of histopathology, leukocyte morphometrics, and cytokine levels. Animals were killed 1 hour and 1, 3, and 6 days after thrombus induction. Our findings demonstrated an early (day 1) neutrophil infiltration into the vein wall followed by a later (days 3 and 6) monocyte/macrophage and lymphocyte response. Cytokines were elevated only under conditions of venous thrombosis. Levels of epithelial neutrophil activating protein-78 (ENA-78), tumor necrosis factor-alpha (TNF), interleukin-6, and JE/monocyte chemoattractant protein-1 (JE/MCP-1) increased over the 6-day period, while macrophage inflammatory protein-1 alpha (MIP-1 alpha) peaked at day 3 after thrombus induction. Additionally, rats were passively immunized with neutralizing antibodies to TNF, ENA-78, MIP-1 alpha, JE/MCP-1, intercellular adhesion molecule-1 (ICAM-1), and CD18 compared with control antibodies. The most effective antibody early after thrombus induction for attenuating vein wall neutrophil extravasation was anti-TNF (P < .01). The monocyte/macrophage extravasation was inhibited most by anti-ICAM-1 followed by anti-TNF (P < .01). These findings demonstrate that venous thrombosis is associated with significant vein wall inflammation that is partially inhibited by neutralizing antibodies to cytokines and adhesion molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.