We report a facile synthesis of multiply twinned Pd@Pt core-shell concave decahedra by controlling the deposition of Pt on preformed Pd decahedral seeds. The Pt atoms are initially deposited on the vertices of a decahedral seed, followed by surface diffusion to other regions along the edges/ridges and then across the faces. Different from the coating of a Pd icosahedral seed, the Pt atoms prefer to stay at the vertices and edges/ridges of a decahedral seed even when the deposition is conducted at 200 °C, naturally generating a core-shell structure covered by concave facets. The nonuniformity in the Pt coating can be attributed to the presence of twin boundaries at the vertices, as well as the {100} facets and twin defects along the edges/ridges of a decahedron, effectively trapping the Pt adatoms at these high-energy sites. As compared to a commercial Pt/C catalyst, the Pd@Pt concave decahedra show substantial enhancement in both catalytic activity and durability toward the oxygen reduction reaction (ORR). For the concave decahedra with 29.6% Pt by weight, their specific (1.66 mA/cm(2)Pt) and mass (1.60 A/mgPt) ORR activities are enhanced by 4.4 and 6.6 times relative to those of the Pt/C catalyst (0.36 mA/cm(2)Pt and 0.32 A/mgPt, respectively). After 10,000 cycles of accelerated durability test, the concave decahedra still exhibit a mass activity of 0.69 A/mgPt, more than twice that of the pristine Pt/C catalyst.
Despite the pivotal role played by the reduction of a salt precursor in the synthesis of metal nanocrystals, it is still unclear how the precursor is reduced. The precursor can be reduced to an atom in the solution phase, followed by its deposition onto the surface of a growing nanocrystal. Alternatively, the precursor can adsorb onto the surface of a growing nanocrystal, followed by reduction through an autocatalytic process. With Pd as an example, here we demonstrate that the pathway has a correlation with the reduction kinetics involved. Our quantitative analyses of the reduction kinetics of PdCl and PdBr by ascorbic acid at room temperature in the absence and presence of Pd nanocubes, respectively, suggest that PdCl was reduced in the solution phase while PdBr was reduced on the surface of a growing nanocrystal. Our results also demonstrate that the reduction pathway of PdBr by ascorbic acid could be switched from surface to solution by raising the reaction temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.