Abnormal antioxidative capabilities were observed in the pathogenesis of steroid-induced osteoporosis (SIOP). Ferroptosis is a recently discovered type of cell death that is characterized by the overproduction of ROS in response to GPX4 and system Xc− downregulation, which is mediated by an Fe2+ fenton reaction. However, investigations focusing on the relationship between ferroptosis and steroid-induced bone disease remain limited. In the present study, high-dose dexamethasone was used to establish a mouse SIOP model, and extracellular vesicles extracted from bone marrow-derived endothelial progenitor cells (EPC-EVs) alleviated the pathological changes in SIOP via microtomography (micro-CT), with elevations in bone volume (BV), bone surface (BS), trabecular thickness (Tb.Th), and trabecular connectivity density (Conn-D) and decreases in trabecular separation (Tb.sp) and the structure model index (SMI). Histopathological analysis, such as haematoxylin and eosin (HE) and Masson staining, showed that EPC-EVs treatment increased the volume and density of the trabecular bone and bone marrow. RNA sequencing (RNA-seq) and bioinformatics analysis revealed subcellular biological alterations upon steroid and EPC-EVs treatment. Compared with the control, high-dose dexamethasone downregulated GPX4 and system XC−, and the Kyoto Encyclopedia of Genes and Genomes (KEGG)-based gene set enrichment analysis suggested that the ferroptotic pathway was activated. In contrast, combination treatment with EPC-EVs partly reversed the KEGG-mapped changes in the ferroptotic pathway at both the gene and mRNA expression levels. In addition, alterations in ferroptotic marker expression, such as SLC3A2, SLC7A11, and GPX4, were further confirmed by RNA-seq. EPC-EVs were able to reverse dexamethasone treatment-induced alterations in cysteine and several oxidative injury markers, such as malondialdehyde (MDA), glutathione (GSH), and glutathione disulphide (GSSG) (as detected by ELISA). In conclusion, EPC-EVs prevented mouse glucocorticoid-induced osteoporosis by suppressing the ferroptotic pathway in osteoblasts, which may provide a basis for novel therapies for SIOP in humans.
Resveratrol, a bioactive compound predominantly found in grapes and red wine, provides a wide range of properties that are beneficial for health, including anticancer and anti-inflammatory activities. Previously published studies have addressed the potential therapeutic effects of resveratrol on rheumatoid arthritis (RA); however, the subcellular mechanism remains to be fully elucidated. In the present study, the therapeutic effects of resveratrol on adjuvant arthritis (AA) in Sprague-Dawley rats were investigated, and the mechanisms of resveratrol-induced apoptosis in fibroblast-like synoviocytes (FLSs) were further examined. Based on the findings, resveratrol treatment over a 12-day period led to a reduction in paw swelling and arthritis scores at the macroscopic level, and an attenuation of inflammatory cell infiltration and synovial hyperplasia, upon a histopathological examination of the AA rats. Furthermore, the administration of resveratrol triggered decreases in the expression of interleukin (IL)-1, IL-6, IL-8 and tumor necrosis factor-α (TNF-α) and an increase in the expression of IL-10, alleviating inflammatory injury in AA rats in a dose-dependent manner. In addition, resveratrol was revealed to induce the apoptosis of FLSs when administered with 5 µM H
2
O
2
as determined by elevated levels of Bax, caspase-3, caspase-12 and C/EBP-homologous protein, and the downregulation of B-cell lymphoma 2 (Bcl-2), suggesting that resveratrol is able to induce apoptosis in FLSs via the mitochondrial pathway and endoplasmic reticulum (ER) stress in a milieu containing 5 µM H
2
O
2
. Furthermore, JC-1 was used as a fluorescent probe to detect the mitochondrial membrane potential (Δψm), and resveratrol was shown to reduce the Δψm in FLSs in the presence of 5 µM H
2
O
2
. However, resveratrol was not able to trigger intracellular calcium overload, although it did suppress ATP- and thapsigargin-induced calcium release from the ER. In conclusion, the present study revealed that resveratrol was able to alleviate inflammatory injury in AA rats, triggering the apoptosis of FLSs via the mitochondrial pathway and ER stress. These results provide a theoretical basis for future treatments using resveratrol for RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.