Bioluminescence is a natural light source based on luciferase catalysis of its substrate luciferin. We performed directed evolution on firefly luciferase using a red-shifted and highly deliverable luciferin analog to establish AkaBLI, an all-engineered bioluminescence in vivo imaging system. AkaBLI produced emissions in vivo that were brighter by a factor of 100 to 1000 than conventional systems, allowing noninvasive visualization of single cells deep inside freely moving animals. Single tumorigenic cells trapped in the mouse lung vasculature could be visualized. In the mouse brain, genetic labeling with neural activity sensors allowed tracking of small clusters of hippocampal neurons activated by novel environments. In a marmoset, we recorded video-rate bioluminescence from neurons in the striatum, a deep brain area, for more than 1 year. AkaBLI is therefore a bioengineered light source to spur unprecedented scientific, medical, and industrial applications.
To reveal the light-color modulation mechanism of firefly (beetle) bioluminescence, we investigated the spectroscopic properties of the phenolate anion 1-O(-) generated from 5,5-dimethyloxyluciferin (1-OH) using various base/solvent combinations. Phenolate anion 1-O(-) is a model compound for the keto form of wild-type oxyluciferin phenolate anion (OL(-)), which is postulated to be the emitter of the bioluminescence. The fluorescence maxima of 1-O(-) were found to depend on the base/solvent combination used, and they varied in the range 541-640 nm, which covers the almost whole range of the bioluminescence emission maximum. In a polar solvent, where (1)(1-O(-))* and the countercation (the conjugate acid of a base) make a solvent-separated ion pair or a free ion couple, the emission maxima of 1-O(-) were found to be modulated by the solvent polarity. In a less polar solvent, where (1)(1-O(-))* and the countercation are formed as a contact ion pair, the strength of the covalent character of the O8'...H bond between (1)(1-O(-))* and the countercation is operative. The effect of the base/solvent combination on the emission properties of (1)(1-O(-))* was also verified using fluorescence lifetime measurements and density functional theory calculations on 1-O(-) and its ion-pair models. On the basis of these results, we propose the following light-color modulation mechanism: (1) the light emitter is the excited singlet state of OL(-) [(1)(OL(-))*], and (2) light emission from (1)(OL(-))* is modulated by the polarity of the active-site environment of a luciferase and the degree of covalent character of the O8'...H bond between (1)(OL(-))* and a protonated basic moiety in the active site. Mechanisms for variation of the bioluminescence colors and their applications are discussed.
In preclinical cancer research, bioluminescence imaging with firefly luciferase and D-luciferin has become a standard to monitor biological processes both in vitro and in vivo. However, the emission maximum (λmax) of bioluminescence produced by D-luciferin is 562 nm where light is not highly penetrable in biological tissues. This emphasizes a need for developing a red-shifted bioluminescence imaging system to improve detection sensitivity of targets in deep tissue. Here we characterize the bioluminescent properties of the newly synthesized luciferin analogue, AkaLumine-HCl. The bioluminescence produced by AkaLumine-HCl in reactions with native firefly luciferase is in the near-infrared wavelength ranges (λmax=677 nm), and yields significantly increased target-detection sensitivity from deep tissues with maximal signals attained at very low concentrations, as compared with D-luciferin and emerging synthetic luciferin CycLuc1. These characteristics offer a more sensitive and accurate method for non-invasive bioluminescence imaging with native firefly luciferase in various animal models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.