Amazon droughts have impacted regional ecosystem functioning as well as global carbon cycling. The severe dry-season droughts in 2005 and 2010, driven by Atlantic sea surface temperature (SST) anomaly, have been widely investigated in terms of drought severity and impacts on ecosystems. Although the influence of Pacific SST anomaly on wet-season precipitation has been well recognized, it remains uncertain to what extent the droughts driven by Pacific SST anomaly could affect forest greenness and photosynthesis in the Amazon. Here, we examined the monthly and annual dynamics of forest greenness and photosynthetic capacity when Amazon ecosystems experienced an extreme drought in 2015/2016 driven by a strong El Niño event. We found that the drought during August 2015-July 2016 was one of the two most severe meteorological droughts since 1901. Due to the enhanced solar radiation during this drought, overall forest greenness showed a small increase, and 21.6% of forests even greened up (greenness index anomaly ≥1 standard deviation). In contrast, solar-induced chlorophyll fluorescence (SIF), an indicator of vegetation photosynthetic capacity, showed a significant decrease. Responses of forest greenness and photosynthesis decoupled during this drought, indicating that forest photosynthesis could still be suppressed regardless of the variation in canopy greenness. If future El Niño frequency increases as projected by earth system models, droughts would result in persistent reduction in Amazon forest productivity, substantial changes in tree composition, and considerable carbon emissions from Amazon.
Abstract. Given the important role of nitrogen input from livestock systems in terrestrial nutrient cycles and the atmospheric chemical composition, it is vital to have a robust estimation of the magnitude and spatiotemporal variation in manure nitrogen production and its application to cropland across the globe. In this study, we used the dataset from the Global Livestock Impact Mapping System (GLIMS) in conjunction with country-specific annual livestock populations to reconstruct the manure nitrogen production during 1860-2014. The estimated manure nitrogen production increased from 21.4 Tg N yr −1 in 1860 to 131.0 Tg N yr −1 in 2014 with a significant annual increasing trend (0.7 Tg N yr −1 , p < 0.01). Changes in manure nitrogen production exhibited high spatial variability and concentrated in several hotspots (e.g., Western Europe, India, northeastern China, and southeastern Australia) across the globe over the study period. In the 1860s, the northern midlatitude region was the largest manure producer, accounting for ∼ 52 % of the global total, while low-latitude regions became the largest share (∼ 48 %) in the most recent 5 years (2010)(2011)(2012)(2013)(2014). Among all the continents, Asia accounted for over one-fourth of the global manure production during 1860-2014. Cattle dominated the manure nitrogen production and contributed ∼ 44 % of the total manure nitrogen production in 2014, followed by goats, sheep, swine, and chickens. The manure nitrogen application to cropland accounts for less than one-fifth of the total manure nitrogen production over the study period. The 5 arcmin gridded global dataset of manure nitrogen production generated from this study could be used as an input for global or regional land surface and ecosystem models to evaluate the impacts of manure nitrogen on key biogeochemical processes and water quality. To ensure food security and environmental sustainability, it is necessary to implement proper manure management practices on cropland across the globe. Datasets are available at https://doi.org/10.1594/PANGAEA.871980 .
Accurate knowledge of 13 C isotopic signature (δ 13 C) of methane from each source is crucial for separating biogenic, fossil fuel and pyrogenic emissions in bottom-up and top-down methane budget. Livestock production is the largest anthropogenic source in the global methane budget, mostly from enteric fermentation of domestic ruminants. However, the global average, geographical distribution and temporal variations of the δ 13 C of enteric emissions are not well understood yet. Here, we provide a new estimation of C3-C4 diet composition of domestic ruminants (cattle, buffaloes, goats and sheep), a revised estimation of yearly enteric CH 4 emissions, and a new estimation for the evolution of its δ 13 C during the period 1961–2012. Compared to previous estimates, our results suggest a larger contribution of ruminants’ enteric emissions to the increasing trend in global methane emissions between 2000 and 2012, and also a larger contribution to the observed decrease in the δ 13 C of atmospheric methane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.