This work describes the development and application of 3D printed MRI phantoms. Unlike traditional phantoms these test objects are made from solid materials which can be imaged directly without filling. The models were manufactured using both MRI visible and invisible materials. The MRI visible materials were imaged on a 3T system to quantify their T1 and T2 properties and CT to quantify the electron density. Three phantoms are described: a distortion phantom was imaged on an open bore MRI system to assess distortion over a 30 cm field-of-view; a solid tumour model was imaged using a motion simulator and compared to a standard water phantom to assess reduction in artefacts; finally, a test object created for textural analysis was evaluated on two 3T systems and reproducibility was assessed. Material 1 was the main material used in all phantom models and has a T1 and T2 of 152.3 ± 3.7 ms and 56.7 ± 2.5 ms and a CT density of 127.9 HU. Material 2 had a CT density of 115.1 HU and material 3 had a T1 and T2 of 149.5 ± 2.9 ms and 68.8 ± 7.8 ms and CT density of 15.3 HU. Image tests demonstrated the suitability and advantage of each phantom over more traditional versions: a high density set of control points enabled a comprehensive measurement of geometric accuracy; sufficient signal with a reduction in artefact was observed in the motion phantom, and the texture model provided reproducible measurements with an ICC > 0.9 for over 76% of texture features. Three different phantoms have been successfully manufactured and used to demonstrate the application of 3D printable materials for MRI phantoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.