The link between Zika virus (ZIKV) infection and microcephaly has raised urgent global alarm. The historical African ZIKV MR766 was recently shown to infect cultured human neural precursor cells (NPCs), but unlike the contemporary ZIKV strains, it is not believed to cause microcephaly. Here we investigated whether the Asian ZIKV strain SZ01 could infect NPCs in vivo and affect brain development. We found that SZ01 replicates efficiently in embryonic mouse brain by directly targeting different neuronal linages. ZIKV infection leads to cell-cycle arrest, apoptosis, and inhibition of NPC differentiation, resulting in cortical thinning and microcephaly. Global gene expression analysis of infected brains reveals upregulation of candidate flavirus entry receptors and dysregulation of genes associated with immune response, apoptosis, and microcephaly. Our model provides evidence for a direct link between Zika virus infection and microcephaly, with potential for further exploration of the underlying mechanisms and management of ZIKV-related pathological effects during brain development.
When this paper was originally published, the accession number for the RNA-seq dataset included in the study was unfortunately omitted. The dataset has now been submitted to the Genome Sequence Archive of the Beijing Institute of Genomics Data Center under the accession number PRJCA000267. The online version of the paper has also been modified to include an Accession Numbers section with this information.
SUMMARY
Zika virus (ZIKV) has become a public health threat due to its global transmission and link to severe congenital disorders. The host immune responses to ZIKV infection have not been fully elucidated, and effective therapeutics are not currently available. Herein, we demonstrated that cholesterol-25-hydroxylase (CH25H) was induced in response to ZIKV infection and that its enzymatic product, 25-hydroxycholesterol (25HC), was a critical mediator of host protection against ZIKV. Synthetic 25HC addition inhibited ZIKV infection in vitro by blocking viral entry, and treatment with 25HC reduced viremia and conferred protection against ZIKV in mice and rhesus macaques. 25HC suppressed ZIKV infection and reduced tissue damage in human cortical organoids and the embryonic brain of the ZIKV-induced mouse microcephaly model. Our findings highlight the protective role of CH25H during ZIKV infection and the potential use of 25HC as a natural antiviral agent to combat ZIKV infection and prevent ZIKV-associated outcomes, such as microcephaly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.