Recent advances in high-entropy alloys have spurred many breakthroughs in the fields of high-temperature materials and optical materials and they provide incredible application potentialities for photothermal conversion systems. Solar-selective absorbers (SSAs), as key components, play a vital role in photothermal conversion efficiency and service life. The most pressing problem with SSAs is their inconsistent optical performance, an instability constraint induced by thermal stress. A feasible method of improving performance stability is the introduction of high-entropy materials, such as high-entropy alloy nitrides. In this study, enabled by an intrinsic MoTaTiCrN absorption layer, the solar configuration achieves greatly enhanced, exceptional thermotolerance and optical properties, leading to the formation of a scalable, highly efficient, and costeffective structure. Computational and experimental approaches are employed to achieve optimum preparation parameters for thicknesses and constituents. The crystal structure of high-entropy ceramic MoTaTiCrN is fully investigated, including thicknessdependent crystal nucleation. High-temperature and long-term thermal stability tests demonstrate that our proposed SSA is mechanically robust and chemically stable. Moreover, a low thermal emittance (15.86%) at 500 °C promotes the photothermal conversion efficiency. In addition, due to the exceptional spectral selectivity (α/ε = 92.3/6.5%), thermal robustness (550 °C for 168 h), and photothermal conversion efficiency (86.9% at 550 °C under 100 sun), it is possible for our proposed SSA to enhance the practical realization of large-area photothermal conversion applications, especially for concentrated solar power systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.