The aim of this study was to evaluate the effects of Saccharomyces cerevisiae fermentation products (SCFP) in the calf starter and milk on ruminal fermentation, gastrointestinal morphology, and microbial community in the first 56 d of life. Thirty Holstein bull calves were randomly assigned to 1 of 3 groups: a texturized calf starter containing 0 (CON), 0.5, or 1% SCFP (XPC, Diamond V, Cedar Rapids, IA) of dry matter from d 4 to 56. In addition, the XPC-supplemented calves were fed with 1 g/d SCFP (SmartCare, Diamond V, Cedar Rapids, IA) in milk from d 2 to 30. All calves were fed 4 L of colostrum within 1 h of birth and were subsequently fed milk twice daily until weaned on d 56. Rumen fluid was collected by an esophageal tube 4 h after the morning feeding on d 28 and 56 to determine ruminal pH, ammonia-N, and volatile fatty acids concentrations. On d 56, 15 (5 per treatment) calves were harvested and slaughter weight, gastrointestinal morphology parameters, and bacteria community were recorded. Papilla length, width, and surface area were measured from 5 locations within the rumen. Villus height, width, surface area, crypt depth, and villus height-to-crypt depth ratio were measured in the duodenum, jejunum, and ileum. Next-generation sequencing technology was used to test the microbial community of the rumen and duodenum samples on d 28 and 56. Data were analyzed by MIXED procedure in SAS (SAS Institute Inc., Cary, NC) with contrast statements to declare CON versus all SCFP and 0.5 versus 1% SCFP in starter grains. Ruminal pH, ammonia-N, and total volatile fatty acids were not altered by SCFP. However, the supplemented groups exhibited higher ruminal butyrate concentrations coinciding with higher Butyrivibrio and lower Prevotella richness than CON group. Supplementation of SCFP increased papilla length in the rumen. In the small intestine, SCFP reduced crypt depth of jejunum, and increased villus height-to-crypt depth ratio in all segments of the small intestine, especially when supplemented at a higher dosage in the starter. In conclusion, Saccharomyces cerevisiae fermentation products improved gastrointestinal morphology, possibly due to increased Butyrivibrio and decreased Prevotella richness of the rumen fluid, which resulted in an increase in butyrate production, and the effect was slightly greater with the higher dosage of SCFP in the starter.
Gut microbiota plays multiple important roles in intestinal and physiological homeostasis, and using fecal microbiota transplantation (FMT) to reprogram gut microbiota has demonstrated promise for redressing intestinal and physiological disorders. This study tested the alterations in reprogramming efficiency caused by different gut preparation procedures and explored the associated underlying mechanisms. We prepared the guts of mice for FMT by administering one of the three most-clinically used pretreatments [antibiotics, bowel cleansing (BC) solution, or no pretreatment], and we found that preparing the gut with antibiotics induced a more efficient modification of the gut bacterial community than was induced by either of the other two pretreatment types. The increased efficiency of antibiotic treatment appeared to occur via increasing the xenomicrobiota colonization. Further analysis demonstrated that antibiotic treatment of mice induced intestinal microbiota disruption, mostly by expelling antibiotic-sensitive bacteria, while the indigenous microbiota was maintained after treatment with a BC solution or in the absence of pretreatment. The amount of antibiotic-resistant bacteria increased shortly after antibiotics usage but subsequently decreased after FMT administration. Together, these results suggest that FMT relied on the available niches in the intestinal mucosa and that preparing the gut with antibiotics facilitated xenomicrobiota colonization in the intestinal mucosa, which thus enhanced the overall gut microbiota reprogramming efficiency.
The aim of the study was to evaluate the effects of Saccharomyces cerevisiae fermentation products (SCFP) on performance and health of calves during the first 63 d of age. Sixty Holstein calves (30 males and 30 females) at 2 d of age were blocked by sex and date of birth then randomly assigned within blocks to 1 of 3 treatments. A texturized calf starter was fed ad libitum containing 0 (control), 0.5, or 1% SCFP (Original XPC, Diamond V, Cedar Rapids, IA) of DM. In addition, the supplemented calves were fed 1 g/d SCFP (SmartCare, Diamond V) in milk until d 30. All calves were fed 4 L of colostrum within 1 h of birth and were subsequently fed milk twice daily until weaned at 56 d of age. Male calves were harvested on d 56. Performance and health of weaned female calves were monitored until 63 d of age to determine the effect of preweaning treatment of SCFP on weaning stress. Starter intake, fecal scores, and medical treatments were recorded daily. Body weight measures and blood samples were collected on d 2, 28, 56, and 63. Serum was analyzed for blood urea nitrogen, fatty acids, insulin-like growth factor-1, glucose, and total protein. Oxidative biomarkers and total antioxidant capacity were also evaluated in the serum. Body weight, DMI, blood parameters, and oxidative biomarkers did not differ among treatments. Supplementation of SCFP lowered fecal scores in the pre- and postweaning periods. Saccharomyces cerevisiae fermentation products can be used to reduce the diarrhea in calves grown under normal commercial conditions.
The community structure of colonised bacteria in the gastrointestinal tracts (GITs) of pre-weaned calves is affected by extrinsic factors, such as the genetics and diet of the calves; however, the dietary impact is not fully understood and warrants further research. Our study revealed that a total of 6, 5, 2 and 10 bacterial genera showed biologically significant differences in the GITs of pre-weaned calves fed four waste-milk diets: acidified waste milk, pasteurised waste milk, untreated bulk milk, and untreated waste milk, respectively. Specifically, generic biomarkers were observed in the rumen (e.g., Bifidobacterium, Parabacteroides, Fibrobacter, Clostridium, etc.), caecum (e.g., Faecalibacterium, Oxalobacter, Odoribacter, etc.) and colon (e.g., Megamonas, Comamonas, Stenotrophomonas, etc.) but not in the faeces. In addition, the predicted metabolic pathways showed that the expression of genes related to metabolic diseases was increased in the calves fed untreated waste milk, which indicated that untreated waste milk is not a suitable liquid diet for pre-weaned calves. This is the first study to demonstrate how different types of waste milk fed to pre-weaned calves affect the community structure of colonised bacteria, and the results may provide insights for the intentional adjustment of diets and gastrointestinal bacterial communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.