Induced pluripotent stem cell (iPS cell) holds great potential for applications in regenerative medicine, drug discovery, and disease modeling. We describe here a practical method to generate human iPS cells from urine-derived cells (UCs) under feeder-free, virus-free, serum-free condition and without oncogene c-MYC. We showed that this approach could be applied in a large population with different genetic backgrounds. UCs are easily accessible and exhibit high reprogramming efficiency, offering advantages over other cell types used for the purpose of iPS generation. Using the approach described in this study, we have generated 93 iPS cell lines from 20 donors with diverse genetic backgrounds. The non-viral iPS cell bank with these cell lines provides a valuable resource for iPS cells research, facilitating future applications of human iPS cells.
Background: Gene editing in human patient-specific iPSCs is critical for regenerative medicine. Results: Nonintegrating -thalassemia iPSCs corrected by TALENs display undetectable off targets and can be differentiated into erythroblasts expressing normal -globin. Conclusion: TALENs can be used for HBB correction efficiently in -thalassemia iPSCs with different types. Significance: Our study extends TALENs for gene correction in patient-specific iPSCs and may have applications in cell therapy.
BackgroundTooth is vital not only for a good smile, but also good health. Yet, we lose tooth regularly due to accidents or diseases. An ideal solution to this problem is to regenerate tooth with patients’ own cells. Here we describe the generation of tooth-like structures from integration-free human urine induced pluripotent stem cells (ifhU-iPSCs).ResultsWe first differentiated ifhU-iPSCs to epithelial sheets, which were then recombined with E14.5 mouse dental mesenchymes. Tooth-like structures were recovered from these recombinants in 3 weeks with success rate up to 30% for 8 different iPSC lines, comparable to H1 hESC. We further detected that ifhU-iPSC derived epithelial sheets differentiated into enamel-secreting ameloblasts in the tooth-like structures, possessing physical properties such as elastic modulus and hardness found in the regular human tooth.ConclusionOur results demonstrate that ifhU-iPSCs can be used to regenerate patient specific dental tissues or even tooth for further drug screening or regenerative therapies.Electronic supplementary materialThe online version of this article (doi:10.1186/2045-9769-2-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.