We report the demonstrated irradiation effect of laser-accelerated protons on human cancer cells. In vitro (living) A549 cells are irradiated with quasimonoenergetic proton bunches of 0.8–2.4 MeV with a single bunch duration of 15 ns. Irradiation with the proton dose of 20 Gy results in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks generated in the cancer cells. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. Unique high-current and short-bunch features make laser-driven proton bunches an excitation source for time-resolved determination of radical yields.
Human cancer cells are irradiated by laser-driven quasimonoenergetic protons. Laser pulse intensities at the 5×1019 W/cm2 level provide the source and acceleration field for protons that are subsequently transported by four energy-selective dipole magnets. The transport line delivers 2.25 MeV protons with an energy spread of 0.66 MeV and a bunch duration of 20 ns. The survival fraction of in vitro cells from a human salivary gland tumor is measured with a colony formation assay following proton irradiation at dose levels of up to 8 Gy, for which the single bunch dose rate is 1×107 Gy/s and the effective dose rate is 0.2 Gy/s for 1 Hz repetition of irradiation. Relative biological effectiveness at the 10% survival fraction is measured to be 1.20±0.11 using protons with a linear energy transfer of 17.1 keV/μm.
Using a high-contrast (10(10):1) and high-intensity (10(21) W/cm(2)) laser pulse with the duration of 40 fs from an optical parametric chirped-pulse amplification/Ti:sapphire laser, a 40 MeV proton bunch is obtained, which is a record for laser pulse with energy less than 10 J. The efficiency for generation of protons with kinetic energy above 15 MeV is 0.1%.
Optical parametric chirped-pulse amplification (OPCPA) operation with low gain by seeding with high-energy, clean pulses is shown to significantly improve the contrast to better than 10(-10) to 10(-11) in a high-intensity Ti:sapphire laser system that is based on chirped-pulse amplification. In addition to the high-contrast broadband, high-energy output from the final amplifier is achieved with a flat-topped spatial profile of filling factor near 77%. This is the result of pump beam spatial profile homogenization with diffractive optical elements. Final pulse energies exceed 30 J, indicating capability for reaching peak powers in excess of 500 TW.
A high stability electron bunch is generated by laser wakefield acceleration with the help of a colliding laser pulse. The wakefield is generated by a laser pulse; the second laser pulse collides with the first pulse at 180 degrees and at 135 degrees realizing optical injection of an electron bunch. The electron bunch has high stability and high reproducibility compared with single pulse electron generation. In the case of 180 degrees collision, special measures have been taken to prevent damage. In the case of 135 degrees collision, since the second pulse is countercrossing, it cannot damage the laser system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.