Tea plants (Camellia sinensis) are commercially cultivated in >60 countries, and their fresh leaves are processed into tea, which is the most widely consumed beverage in the world. Although several chromosome-level tea plant genomes have been published, they collapsed the two haplotypes and ignored a large number of allelic variations that may underlie important biological functions in this species. Here, we present a phased chromosome-scale assembly for an elite oolong tea cultivar, “Huangdan”, that is well known for its high levels of aroma. Based on the two sets of haplotype genome data, we identified numerous genetic variations and a substantial proportion of allelic imbalance related to important traits, including aroma- and stress-related alleles. Comparative genomics revealed extensive structural variations as well as expansion of some gene families, such as terpene synthases (TPSs), that likely contribute to the high-aroma characteristics of the backbone parent, underlying the molecular basis for the biosynthesis of aroma-related chemicals in oolong tea. Our results uncovered the genetic basis of special features of this oolong tea cultivar, providing fundamental genomic resources to study evolution and domestication for the economically important tea crop.
Tea powder, a biosorbent prepared from wasted oolong tea, was collected as a prospective adsorbent for the adsorption of methylene blue (MB) from aqueous solution. e effect of factors on adsorption efficiency, isotherms, kinetics, and potential mechanism was carried out. Adsorption capacity of MB onto wasted tea powder increased with the MB concentration and contact time, whereas the increase in pH value and ion strength appeared to have a negative effect for the adsorption process. e adsorption efficiency increased rapidly and reached a stable state within 120 min. e optimal tea powder loading weight is suggested to be at 0.1 to 0.2 g, and the highest efficiency of 94.8% is achieved at 333 K. ere were no significant changes in adsorption efficiency when the effect of temperature is considered. e Langmuir isotherm model was found to be the best isotherm models to elucidate the adsorption mechanism in this study. e maximum adsorption capacities calculated at different temperatures by the Langmuir model ranging from 312.5 to 333.3 mg·g −1 were much close to the experimental results. From the kinetic analysis, the pseudo--second-order model was found to be the best model to describe the adsorption behavior. e calculated adsorption capacities at different initial MB concentrations by the pseudo-second-order model ranging from 92.34 to 400 mg·g −1 were well close to the experimental data. e fitting results obtained from the intraparticle diffusion model suggested that the intraparticle diffusion was not the only rate-controlling step and some other mechanisms along with the intraparticle diffusion were probably involved. e intraparticle diffusion of MB molecules into pore structures of wasted tea powder is the ratelimiting step for the adsorption process in this study. e repetitive cycle experiments indicated that the wasted oolong tea powder was efficiently regenerated using NaOH and thus be used for many times.
Background Catechins are crucial in determining the flavour and health benefits of tea, but it remains unclear that how the light intensity regulates catechins biosynthesis. Therefore, we cultivated tea plants in a phytotron to elucidate the response mechanism of catechins biosynthesis to light intensity changes. Results In the 250 μmol·m− 2·s− 1 treatment, the contents of epigallocatechin, epigallocatechin gallate and total catechins were increased by 98.94, 14.5 and 13.0% respectively, compared with those in the 550 μmol·m− 2·s− 1 treatment. Meanwhile, the photosynthetic capacity was enhanced in the 250 μmol·m− 2·s− 1 treatment, including the electron transport rate, net photosynthetic rate, transpiration rate and expression of related genes (such as CspsbA, CspsbB, CspsbC, CspsbD, CsPsbR and CsGLK1). In contrast, the extremely low or high light intensity decreased the catechins accumulation and photosynthetic capacity of the tea plants. The comprehensive analysis revealed that the response of catechins biosynthesis to the light intensity was mediated by the photosynthetic capacity of the tea plants. Appropriately high light upregulated the expression of genes related to photosynthetic capacity to improve the net photosynthetic rate (Pn), transpiration rate (Tr), and electron transfer rate (ETR), which enhanced the contents of substrates for non-esterified catechins biosynthesis (such as EGC). Meanwhile, these photosynthetic capacity-related genes and gallic acid (GA) biosynthesis-related genes (CsaroB, CsaroDE1, CsaroDE2 and CsaroDE3) co-regulated the response of GA accumulation to light intensity. Eventually, the epigallocatechin gallate content was enhanced by the increased contents of its precursors (EGC and GA) and the upregulation of the CsSCPL gene. Conclusions In this study, the catechin content and photosynthetic capacity of tea plants increased under appropriately high light intensities (250 μmol·m− 2·s− 1 and 350 μmol·m− 2·s− 1) but decreased under extremely low or high light intensities (150 μmol·m− 2·s− 1 or 550 μmol·m− 2·s− 1). We found that the control of catechin accumulation by light intensity in tea plants is mediated by the plant photosynthetic capacity. The research provided useful information for improving catechins content and its light-intensity regulation mechanism in tea plant.
Rhizosphere microbes play pivotal roles in regulating the soil ecosystem by influencing and directly participating in the nutrient cycle. Evidence shows that the rhizosphere microbes are highly dependent on plant genotype and cultivars; however, their characteristics in soils with different tea (Camellia sinensis L.) cultivars are poorly understood. Therefore, the present study investigated the rhizosphere soil properties, microbial community composition, and their potential functions under four tea cultivars Huangjinya (HJY), Tieguanyin (TGY), Zhongcha No.108 (ZC108), and Zijuan (ZJ). The study found a minor impact of cultivars on rhizosphere soil properties but a significant influence on microbial community structure. Except for available potassium (AK) (HJY > TGY > ZC108 > ZJ), tea cultivars had no significant impact on other soil properties. The tea cultivars resulted in substantial differences only in the diversity of soil bacteria of lower taxonomic levels (family to species), as well as significantly changed communities’ structure of bacteria and fungi (R2 = 0.184, p = 0.013 and R2 = 0.226, p = 0.001). Specifically, Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteriota, and Firmicutes accounted for approximately 96% of the bacterial phyla in the tea soils, while Ascomycota, Mortierellomycota, Rozellomycota, Basidiomycota, and Monoblepharomycota (90% of the total) predominated the soil fungal community. Redundancy analysis (RDA) identified soil pH (14.53%) and ammonium-nitrogen (NH4+-N; 16.74%) as the key factors for the changes in bacterial and fungal communities, respectively. Finally, FAPROTAX analysis predicted significant differences in the carbon, nitrogen, and sulfur (C-N-S)-cycling among the soils with different tea cultivars, specifically, ZJ cultivar showed the highest C-cycling but the lowest N- and S-cycling, while FUNGuild analysis revealed that the pathotroph group was significantly lower in ZC108 than the other cultivars. These findings improve our understanding of the differences in microbial community characteristics among tea cultivars and provide a basis for precisely selecting and introducing excellent tea varieties in the agriculture practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.