A number of human cancers harbor somatic point mutations in the genes encoding isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2). These mutations alter residues in the enzyme active sites and confer a gain-of-function in cancer cells, resulting in the accumulation and secretion of the oncometabolite (R)-2-hydroxyglutarate (2HG). We developed a small molecule, AGI-6780, that potently and selectively inhibits the tumor-associated mutant IDH2/R140Q. A crystal structure of AGI-6780 complexed with IDH2/R140Q revealed that the inhibitor binds in an allosteric manner at the dimer interface. The results of steady-state enzymology analysis were consistent with allostery and slow-tight binding by AGI-6780. Treatment with AGI-6780 induced differentiation of TF-1 erythroleukemia and primary human acute myelogenous leukemia cells in vitro. These data provide proof-of-concept that inhibitors targeting mutant IDH2/R140Q could have potential applications as a differentiation therapy for cancer.
Entrectinib is a fi rst-in-class pan-TRK kinase inhibitor currently undergoing clinical testing in colorectal cancer and other tumor types. A patient with metastatic colorectal cancer harboring an LMNA-NTRK1 rearrangement displayed a remarkable response to treatment with entrectinib, which was followed by the emergence of resistance. To characterize the molecular bases of the patient's relapse, circulating tumor DNA (ctDNA) was collected longitudinally during treatment, and a tissue biopsy, obtained before entrectinib treatment, was transplanted in mice (xenopatient), which then received the same entrectinib regimen until resistance developed. Genetic profi ling of ctDNA and xenopatient samples showed acquisition of two point mutations in the catalytic domain of NTRK1 , p.G595R and p.G667C. Biochemical and pharmacologic analysis in multiple preclinical models confi rmed that either mutation renders the TRKA kinase insensitive to entrectinib. These fi ndings can be immediately exploited to design next-generation TRKA inhibitors. SIGNIFICANCE:We provide proof of principle that analyses of xenopatients (avatar) and liquid biopsies allow the identifi cation of drug resistance mechanisms in parallel with clinical treatment of an individual patient. We describe for the fi rst time that p.G595R and p.G667C TRKA mutations drive acquired resistance to entrectinib in colorectal cancers carrying NTRK1 rearrangements. Cancer Discov; 6(1);[36][37][38][39][40][41][42][43][44]
Tea is a popular beverage consumed worldwide. The metabolic fate of its major constituents, catechins, however, is not well-known. In this study, two catechin metabolites were detected in the urine and plasma of human volunteers after ingestion of green tea. These metabolites were identified by LC/ESI-MS and NMR as (-)-5-(3',4', 5'-trihydroxyphenyl)-gamma-valerolactone (M4) and (-)-5-(3', 4'-dihydroxyphenyl)-gamma-valerolactone (M6). The renal excretion of M4 and M6 had a 3 h lag time and peaked 7.5-13.5 h after ingestion of a single dose of green tea, while (-)-epigallocatechin (EGC) and (-)-epicatechin peaked at 2 h. M4 and M6 were two major tea metabolites with urinary cumulative excretions as high as 8-25 times the levels of EGC and (-)-epicatechin in some of our subjects, and accounted for 6-39% of the amounts of ingested EGC and (-)-epicatechin. Both the metabolites appeared to be produced by intestinal microorganisms, with EGC and (-)-epicatechin as the precursors of M4 and M6, respectively. Repeated ingestion of green tea produced a slight accumulative effect of the metabolites. They were also detected in the plasma, exhibiting kinetics similar to those of the urinary metabolites, and in the feces. Study on these metabolites may help us further understand the cancer chemopreventive actions and other beneficial effects of tea.
Optimization of a series of R132H IDH1 inhibitors from a high throughput screen led to the first potent molecules that show robust tumor 2-HG inhibition in a xenograft model. Compound 35 shows good potency in the U87 R132H cell based assay and ∼90% tumor 2-HG inhibition in the corresponding mouse xenograft model following BID dosing. The magnitude and duration of tumor 2-HG inhibition correlates with free plasma concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.