After the global spread of SARS-CoV-2 Omicron BA.2 lineage, some BA.2-related variants that acquire mutations in the L452 residue of spike protein, such as BA.2.9.1 and BA.2.13 (L452M), BA.2.12.1 (L452Q), and BA.2.11, BA.4 and BA.5 (L452R), emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these L452R/M/Q-bearing BA.2-related Omicron variants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1 and BA.2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. Furthermore, infection experiments using hamsters indicated that BA.4/5 is more pathogenic than BA.2. Altogether, our multiscale investigations suggest that the risk of L452R/M/Q-bearing BA.2-related Omicron variants, particularly BA.4 and BA.5, to global health is potentially greater than that of original BA.2.HighlightsSpike L452R/Q/M mutations increase the effective reproduction number of BA.2BA.4/5 is resistant to the immunity induced by BA.1 and BA.2 infectionsBA.2.12.1 and BA.4/5 more efficiently spread in human lung cells than BA.2BA.4/5 is more pathogenic than BA.2 in hamsters
The bovine MHC (BoLA) class II DRB3 alleles are associated with polyclonal expansion of lymphocytes caused by bovine leukemia virus (BLV) infection in cattle. To examine whether the DRB3*0902
allele, one of the resistance-associated alleles, is associated with the proviral load, we measured BLV proviral load of BLV-infected cattle and clarified their DRB3 alleles. Fifty-seven animals with
DRB3*0902 were identified out of 835 BLV-infected cattle and had significantly lower proviral load (P<0.000001) compared with the rest of the infected animals, in both Japanese Black and
Holstein cattle. This result strongly indicates that the BoLA class II DRA/DRB3*0902 molecule plays an important immunological role in suppressing viral replication, resulting in resistance to the disease
progression.
The purpose of this study was to detect porcine epidemic diarrhea virus (PEDV) subclinically infected pigs shipped from non-case farms to slaughterhouses. Systematic sampling was conducted
at two slaughterhouses. A total of 1,556 blood samples were collected from 80 case and non-case farms from pigs over 6 months old. Blood samples were centrifuged to obtain sera. Serial serum
dilutions were subjected to serological examination for PEDV presence using Neutralization test (NT). The cut-off titer was set at titer of 1:2 dilution and farms with at least one positive
sample in duplicate were classified as PED-positive farms. Several non-case farms (9.4%, 6/64) and 100% (16/16) of the case farms were indeed positive for PEDV. The proportion of
seropositive animals from case farms was 63.7%, significantly different from that of non-case farms (4.3%, P<0.05). In both case and non-case farms, the proportion of
seropositive animals in farrow-to-finish farms was significantly higher than in wean-to-finish farms (P<0.05). Seropositive animals in non-case farms were detected by NT
in a sero-survey by sampling at slaughterhouses. Therefore, subclinically infected pigs should be considered prior to shipment.
BackgroundPorcine epidemic diarrhoea (PED) is an emerging disease in pigs that causes massive economic losses in the swine industry, with high mortality in suckling piglets. Early identification of PED virus (PEDV)-infected herd through surveillance or monitoring strategies is necessary for mass control of PED. However, a common working diagnosis system involves identifying PEDV-infected animals individually, which is a costly and time-consuming approach. Given the above information, the thrusts of this study were to develop a real-time fluorescent reverse transcription loop-mediated isothermal amplification (RtF-RT-LAMP) assay and establish a pooled testing system using faecal sample to identify PEDV-infected herd.ResultsIn this study, we developed an accurate, rapid, cost-effective, and simple RtF- RT-LAMP assay for detecting the PEDV genome targeting M gene. The pooled testing system using the RtF-RT-LAMP assay was optimized such that a pool of at least 15 individual faecal samples could be analysed.ConclusionsThe developed RtF-RT-LAMP assay in our study could support the design and implementation of large-scaled epidemiological surveys as well as active surveillance and monitoring programs for effective control of PED.Electronic supplementary materialThe online version of this article (10.1186/s12917-018-1498-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.