Scoring functions have been widely used to assess protein-ligand binding affinity in structure-based drug discovery. However, currently commonly used scoring functions face some challenges including poor correlation between calculated scores and experimental binding affinities, target-dependent performance, and low sensitivity to analogues. In this account, we propose a new empirical scoring function termed ID-Score. ID-Score was established based on a comprehensive set of descriptors related to protein-ligand interactions; these descriptors cover nine categories: van der Waals interaction, hydrogen-bonding interaction, electrostatic interaction, π-system interaction, metal-ligand bonding interaction, desolvation effect, entropic loss effect, shape matching, and surface property matching. A total of 2278 complexes were used as the training set, and a modified support vector regression (SVR) algorithm was used to fit the experimental binding affinities. Evaluation results showed that ID-Score outperformed other selected commonly used scoring functions on a benchmark test set and showed considerable performance on a large independent test set. ID-Score also showed a consistent higher performance across different biological targets. Besides, it could correctly differentiate structurally similar ligands, indicating higher sensitivity to analogues. Collectively, the better performance of ID-Score enables it as a useful tool in assessing protein-ligand binding affinity in structure-based drug discovery as well as in lead optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.