With the advent of graphene, the most studied of all two-dimensional materials, many inorganic analogues have been synthesized and are being exploited for novel applications. Several approaches have been used to obtain large-grain, high-quality materials. Naturally occurring ores, for example, are the best precursors for obtaining highly ordered and large-grain atomic layers by exfoliation. Here, we demonstrate a new two-dimensional material 'hematene' obtained from natural iron ore hematite (α-FeO), which is isolated by means of liquid exfoliation. The two-dimensional morphology of hematene is confirmed by transmission electron microscopy. Magnetic measurements together with density functional theory calculations confirm the ferromagnetic order in hematene while its parent form exhibits antiferromagnetic order. When loaded on titania nanotube arrays, hematene exhibits enhanced visible light photocatalytic activity. Our study indicates that photogenerated electrons can be transferred from hematene to titania despite a band alignment unfavourable for charge transfer.
The core of a nuclear reactor presents exceptionally stringent requirements for structuralmaterialsduetoitshightemperatureandintenseradiationaswellasitsneed for unfailing mechanical integrity [1][2][3][4] . Thus, candidate materials for nuclear applications must possess excellent irradiation tolerance, high strength, and thermal stability.However,thesepropertiesaredifficulttorealizesimultaneouslyinonematerialbecause of apparently intrinsic tradeoffs between them. Here we report a novel interface engineering strategy that simultaneously achieves superior irradiation tolerance, high strength, and high thermal stability in bulk nanolayered (NL) Cu-Nb composites. By synthesizing bulk NL Cu-Nb composites containing interfaces with controlled sink efficiencies, we design a material in which nearly all irradiation-induced defects are
The lithium-sulfur battery is considered as one of the most promising energy storage systems and has received enormous attentions due to its high energy density and low cost. However, polysulfide dissolution and the resulting shuttle effects hinder its practical application unless very costly solutions are considered. Herein, a sulfur-rich polymer termed sulfur-limonene polysulfide is proposed as powerful electroactive material that uniquely combines decisive advantages and leads out of this dilemma. It is amenable to a large-scale synthesis by the abundant, inexpensive, and environmentally benign raw materials sulfur and limonene (from orange and lemon peels). Moreover, owing to self-protection and confinement of lithium sulfide and sulfur, detrimental dissolution and shuttle effects are successfully avoided. The sulfur-limonene-based electrodes (without elaborate synthesis or surface modification) exhibit excellent electrochemical performances characterized by high discharge capacities (≈1000 mA h g at C/2) and remarkable cycle stability (average fading rate as low as 0.008% per cycle during 300 cycles).
Two-dimensional (2D) materials from naturally occurring minerals are promising and possess interesting physical properties. A new 2D material "Ilmenene" has been exfoliated from the naturally occurring titanate ore ilmenite (FeTiO 3 ) by employing liquid phase exfoliation in a dimethylformamide solvent by ultrasonic bath sonication. Ilmenene displays a [001] orientation that is confirmed by transmission electron microscopy. Probable charge transfer excitation from Fe 2+ Ti 4+ to Fe 3+ Ti 3+ results in ferromagnetic ordering along with the antiferromagnetic phase accompanied by enhanced anisotropy due to surface spins. The 2D nature and band gap states help ilmenene form a heterojunction photocatalyst with titania nanotube arrays, capable of broad spectrum light harvesting and separating/transferring the photogenerated charges effectively for solar photoelectrochemical water splitting.
Sodium-ion batteries (SIB) are regarded as the most promising competitors to lithium-ion batteries in spite of expected electrochemical disadvantages. Here a "cross-linking" strategy is proposed to mitigate the typical SIB problems. We present a SIB full battery that exhibits a working potential of 3.3 V and an energy density of 180 Wh kg with good cycle life. The anode is composed of cross-linking hollow carbon sheet encapsulated CuP nanoparticles (CHCS-CuP) and a cathode of carbon coated NaV(PO)F (C-NVPF). For the preparation of the CHCS-CuP nanocomposites, we develop an in situ phosphorization approach, which is superior to mechanical mixing. Such CHCS-CuP nanocomposites deliver a high reversible capacity of 451 mAh g at 80 mA g, showing an excellent capacity retention ratio of 91% in 200 cycles together with good rate capability and stable cycling performance. Post mortem analysis reveals that the cross-linking hollow carbon sheet structure as well as the initially formed SEI layers are well preserved. Moreover, the inner electrochemical resistances do not significantly change. We believe that the presented battery system provides significant progress regarding practical application of SIB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.