BackgroundLarge-scale RNAi screening has become an important technology for identifying genes involved in biological processes of interest. However, the quality of large-scale RNAi screening is often deteriorated by off-targets effects. In order to find statistically significant effector genes for pathogen entry, we systematically analyzed entry pathways in human host cells for eight pathogens using image-based kinome-wide siRNA screens with siRNAs from three vendors. We propose a Parallel Mixed Model (PMM) approach that simultaneously analyzes several non-identical screens performed with the same RNAi libraries.ResultsWe show that PMM gains statistical power for hit detection due to parallel screening. PMM allows incorporating siRNA weights that can be assigned according to available information on RNAi quality. Moreover, PMM is able to estimate a sharedness score that can be used to focus follow-up efforts on generic or specific gene regulators. By fitting a PMM model to our data, we found several novel hit genes for most of the pathogens studied.ConclusionsOur results show parallel RNAi screening can improve the results of individual screens. This is currently particularly interesting when large-scale parallel datasets are becoming more and more publicly available. Our comprehensive siRNA dataset provides a public, freely available resource for further statistical and biological analyses in the high-content, high-throughput siRNA screening field.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-1162) contains supplementary material, which is available to authorized users.
Systematic genetic perturbation screening in human cells remains technically challenging. Typically, large libraries of chemically synthesized siRNA oligonucleotides are used, each designed to degrade a specific cellular mRNA via the RNA interference (RNAi) mechanism. Here, we report on data from three genome-wide siRNA screens, conducted to uncover host factors required for infection of human cells by two bacterial and one viral pathogen. We find that the majority of phenotypic effects of siRNAs are unrelated to the intended "on-target" mechanism, defined by full complementarity of the 21-nt siRNA sequence to a target mRNA. Instead, phenotypes are largely dictated by "off-target" effects resulting from partial complementarity of siRNAs to multiple mRNAs via the "seed" region (i.e., nucleotides 2-8), reminiscent of the way specificity is determined for endogenous microRNAs. Quantitative analysis enabled the prediction of seeds that strongly and specifically block infection, independent of the intended ontarget effect. This prediction was confirmed experimentally by designing oligos that do not have any on-target sequence match at all, yet can strongly reproduce the predicted phenotypes. Our results suggest that published RNAi screens have primarily, and unintentionally, screened the sequence space of microRNA seeds instead of the intended on-target space of protein-coding genes. This helps to explain why previously published RNAi screens have exhibited relatively little overlap. Our analysis suggests a possible way of identifying "seed reagents" for controlling phenotypes of interest and establishes a general strategy for extracting valuable untapped information from past and future RNAi screens.high-throughput RNAi screening | antimicrobials
Small interfering RNAs (siRNAs) exhibit strong off-target effects, which confound the gene-level interpretation of RNA interference screens and thus limit their utility for functional genomics studies. Here, we present gespeR, a statistical model for reconstructing individual, gene-specific phenotypes. Using 115,878 siRNAs, single and pooled, from three companies in three pathogen infection screens, we demonstrate that deconvolution of image-based phenotypes substantially improves the reproducibility between independent siRNA sets targeting the same genes. Genes selected and prioritized by gespeR are validated and shown to constitute biologically relevant components of pathogen entry mechanisms and TGF-β signaling. gespeR is available as a Bioconductor R-package.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-015-0783-1) contains supplementary material, which is available to authorized users.
Protein delivery based on bacterial type III secretion allows controllable injection of bacterial, viral, and human proteins into target cells, functional interaction studies, targeting of proteins to subcellular locations, and systems-level signaling analysis of a given translocated protein.
Umbilical cord blood (UCB) is a valuable alternative source of hematopoietic stem cells (HSCs). It has unique advantages of easy procurement, absence of risk to donors, low risk of transmitting infections, immediate availability, greater tolerance of human leukocyte antigen (HLA) disparity, and lower incidence of inducing severe graft-versus-host disease (GVHD). In the last several years, these features of UCB permit the field of UCB transplantation (UCBT) to move at a faster pace for both children and adults with malignancies and nonmalignancies. However, new strategies and novel developments are expected to improve engraftment and reconstitution, and to enable in utero transplantation for early therapy, as well as to allow the therapy for a wide spectrum of human diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.