We examined the role of cyclooxygenase-2 (COX-2) in the late phase of ischemic preconditioning (PC). A total of 176 conscious rabbits were used. Ischemic PC (six cycles of 4-min coronary occlusions͞4-min reperfusions) resulted in a rapid increase in myocardial COX-2 mRNA levels (؉231 ؎ 64% at 1 h; RNase protection assay) followed 24 h later by an increase in COX-2 protein expression (؉216 ؎ 79%; Western blotting) and in the myocardial content of prostaglandin (PG)E2 and 6-keto-PGF1␣ (؉250 ؎ 85% and ؉259 ؎ 107%, respectively; enzyme immunoassay). Administration of two unrelated COX-2 selective inhibitors (NS-398 and celecoxib) 24 h after ischemic PC abolished the ischemic PC-induced increase in tissue levels of PGE2 and 6-keto-PGF1␣. The same doses of NS-398 and celecoxib, given 24 h after ischemic PC, completely blocked the cardioprotective effects of late PC against both myocardial stunning and myocardial infarction, indicating that COX-2 activity is necessary for this phenomenon to occur. Neither NS-398 nor celecoxib lowered PGE 2 or 6-keto-PGF1␣ levels in the nonischemic region of preconditioned rabbits, indicating that constitutive COX-1 activity was unaffected. Taken together, these results demonstrate that, in conscious rabbits, up-regulation of COX-2 plays an essential role in the cardioprotection afforded by the late phase of ischemic PC. Therefore, this study identifies COX-2 as a cardioprotective protein. The analysis of arachidonic acid metabolites strongly points to PGE 2 and͞or PGI2 as the likely effectors of COX-2-dependent protection. The recognition that COX-2 mediates the antistunning and antiinfarct effects of late PC impels a reassessment of current views regarding this enzyme, which is generally regarded as detrimental.
Impaired immunity in late stage cancer patients is not limited to anti-tumor responses, as demonstrated by poor vaccination protection and high susceptibility to infection 1 – 3 . This has been largely attributed to chemotherapy-induced impairment of innate immunity such as neutropenia 2 , whereas systemic effects of tumors on hematopoiesis and adoptive immunity remain incompletely understood. Here we observed anemia associated with severe deficiency of CD8 + T cell responses against pathogens in treatment-naïve mice bearing large tumors. Specifically, we identify CD45 + erythroid progenitor cells (CD71 + TER119 + , EPCs) as robust immunosuppressors. CD45 + EPCs, induced by tumor growth-associated extramedullary hematopoiesis, accumulate in the spleen to become a major population, outnumbering regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). The CD45 + EPC transcriptome closely resembles that of MDSCs, and, like MDSCs, reactive oxygen species production is a major mechanism underlying CD45 + EPC-mediated immunosuppression. Similarly, an immunosuppressive CD45 + EPC population was detected in cancer patients with anemia. These findings identify a major population of immunosuppressive cells that likely contributes to the impaired T cell responses commonly observed in advanced cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.