High molecular weight (300–650 Da) naturally charged negative ions have previously been observed at a boreal forest site in Hyytiälä, Finland. The long-term measurements conducted in this work showed that these ions are observed practically every night during spring and summer in Hyytiälä. The ambient mass spectral patterns could be reproduced in striking detail during additional measurements of α-pinene (C<sub>10</sub>H<sub>16</sub>) oxidation at low-OH conditions in the Jülich Plant Atmosphere Chamber (JPAC). The ions were identified as clusters of the nitrate ion (NO<sub>3</sub><sup>−</sup>) and α-pinene oxidation products reaching oxygen to carbon ratios of 0.7–1.3, while retaining most of the initial ten carbon atoms. Attributing the ions to clusters instead of single molecules was based on additional observations of the same extremely oxidized organics in clusters with HSO<sub>4</sub><sup>−</sup> (Hyytiälä) and C<sub>3</sub>F<sub>5</sub>O<sub>2</sub><sup>−</sup> (JPAC). The most abundant products in the ion spectra were identified as C<sub>105</sub>H<sub>14</sub>O<sub>7</sub>, C<sub>10</sub>H<sub>14</sub>O<sub>9</sub>, C<sub>10</sub>H<sub>16</sub>O<sub>9</sub>, and C<sub>10</sub>H<sub>14</sub>O<sub>11</sub>. The mechanism responsible for forming these molecules is still not clear, but the initial reaction is most likely ozone attack at the double bond, as the ions are mainly observed under dark conditions. β-pinene also formed highly oxidized products under the same conditions, but less efficiently, and mainly C<sub>9</sub> compounds which were not observed in Hyytiälä, where β-pinene on average is 4–5 times less abundant than α-pinene. Further, to explain the high O/C together with the relatively high H/C, we propose that geminal diols and/or hydroperoxide groups may be important. We estimate that the night-time concentration of the sum of the neutral extremely oxidized products is on the order of 0.1–1 ppt (~10<sup>6</sup>–10<sup>7</sup> molec cm<sup>−3</sup>). This is in a similar range as the amount of gaseous H<sub>2</sub>SO<sub>4</sub> in Hyytiälä during day-time. As these highly oxidized organics are roughly 3 times heavier, likely with extremely low vapor pressures, their role in the initial steps of new aerosol particle formation and growth may be important and needs to be explored in more detail in the future
A recently developed atmospheric pressure interface mass spectrometer (APi-TOF) measured the negative and positive ambient ion composition at a boreal forest site. As observed in previous studies, the negative ions were dominated by strong organic and inorganic acids (e.g. malonic, nitric and sulfuric acid), whereas the positive ions consisted of strong bases (e.g. alkyl pyridines and quinolines). Several new ions and clusters of ions were identified based on their exact masses, made possible by the high resolution, mass accuracy and sensitivity of the APi-TOF. Time series correlograms aided in peak identification and assigning the atomic compositions to molecules. Quantum chemical calculations of proton affinities and cluster stabilities were also used to confirm the plausibility of the assignments. Acids in the gas phase are predominantly formed by oxidation in the gas phase, and thus the concentrations are expected to vary strongly between day and night. This was also the case in this study, where the negative ions showed strong diurnal behavior, whereas the daily changes in the positive ions were considerably smaller. A special focus in this work was the changes in the ion distributions occurring during new particle formation events. We found that sulfuric acid, together with its clusters, dominated the negative ion spectrum during these events. The monomer (HSO<sub>4</sub><sup>−</sup>) was the largest peak, together with the dimer (H<sub>2</sub>SO<sub>4</sub>·HSO<sub>4</sub><sup>−</sup>) and trimer ((H<sub>2</sub>SO<sub>4</sub>)<sub>2</sub>·HSO<sub>4</sub><sup>−</sup>). SO<sub>5</sub><sup>−</sup> also tracked HSO<sub>4</sub><sup>−</sup> at around 20% of the HSO<sub>4</sub><sup>−</sup> concentration at all times. During the strongest events, also the tetramer and a cluster with the tetramer and ammonia were detected. Quantum chemical calculations predict that sulfuric acid clusters containing ammonia are much more stable when neutral, thus the detection of a single ion cluster implies that ammonia can be an important compound in the nucleation process. We also believe to have made the first observations of an organosulfate (glycolic acid sulfate) in the gas phase. This ion, and its cluster with sulfuric acid, correlates with the HSO<sub>4</sub><sup>−</sup>, but peaks in the early afternoon, some hours later than HSO<sub>4</sub><sup>−</sup> itself. A list of all identified ions is presented in the supplementary material, and also a list of all detected masses not yet identified
Molecular clustering is the initial step of atmospheric new particle formation (NPF) that generates numerous secondary particles. Using two online mass spectrometers with and without a chemical ionization inlet, we characterized the neutral clusters and the naturally charged ion clusters during NPF periods in urban Beijing. In ion clusters, we observed pure sulfuric acid (SA) clusters, SA–amine clusters, SA–ammonia (NH3) clusters, and SA–amine–NH3 clusters. However, only SA clusters and SA–amine clusters were observed in the neutral form. Meanwhile, oxygenated organic molecule (OOM) clusters charged by a nitrate ion and a bisulfate ion were observed in ion clusters. Acid–base clusters correlate well with the occurrence of sub-3 nm particles, whereas OOM clusters do not. Moreover, with the increasing cluster size, amine fractions in ion acid–base clusters decrease, while NH3 fractions increase. This variation results from the reduced stability differences between SA–amine clusters and SA–NH3 clusters, which is supported by both quantum chemistry calculations and chamber experiments. The lower average number of dimethylamine (DMA) molecules in atmospheric ion clusters than the saturated value from controlled SA–DMA nucleation experiments suggests that there is insufficient DMA in urban Beijing to fully stabilize large SA clusters, and therefore, other basic molecules such as NH3 play an important role.
Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, H 2 SO 4 ). Despite their importance, accurate prediction of MSA and H 2 SO 4 from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to −10 °C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while H 2 SO 4 production is modestly affected. This leads to a gas-phase H 2 SO 4 -to-MSA ratio (H 2 SO 4 /MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CH 3 S(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2–10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NO x effect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase H 2 SO 4 /MSA measurements.
<p><strong>Abstract.</strong> It was recently shown by the CERN CLOUD experiment that biogenic highly oxygenated molecules (HOMs) form particles under atmospheric conditions in the absence of sulfuric acid where ions enhance the nucleation rate by one to two orders of magnitude. The biogenic HOMs were produced from ozonolysis of &#945;-pinene at 5&#8201;&#176;C. Here we extend this study to compare the molecular composition of positive and negative HOM clusters measured with atmospheric pressure interface time-of-flight mass spectrometers (APi-TOFs), at three different temperatures (25&#8201;&#176;C, 5&#8201;&#176;C and &#8722;25&#8201;&#176;C). Most negative HOM clusters include a nitrate (NO<sub>3</sub><sup>&#8722;</sup>) ion and the spectra are similar to those seen in the nighttime boreal forest. On the other hand, most positive HOM clusters include an ammonium (NH<sub>4</sub><sup>+</sup>) ion and the spectra are characterized by mass bands that differ in their molecular weight by ~&#8201;20 C atoms, corresponding to HOM dimers. At lower temperatures the average oxygen to carbon (O&#8201;:&#8201;C) ratio of the HOM clusters decreases for both polarities, reflecting an overall reduction of HOM formation with decreasing temperature. This indicates a decrease in the rate of autoxidation with temperature due to a rather high activation energy as has previously been determined by quantum chemical calculations. Furthermore, at the lowest temperature (&#8722;25&#8201;&#176;C) the presence of C<sub>30</sub> clusters show that HOM monomers start to contribute to the nucleation of positive clusters. These experimental findings are supported by quantum chemical calculations of the binding energies of representative neutral and charged clusters.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.