Background Recent reports highlight the incursion of community-associated MRSA within healthcare settings. However, knowledge of this phenomenon remains limited in Latin America. The aim of this study was to evaluate the molecular epidemiology of MRSA in three tertiary-care hospitals in Medellín, Colombia. Methods An observational cross-sectional study was conducted from 2008–2010. MRSA infections were classified as either community-associated (CA-MRSA) or healthcare-associated (HA-MRSA), with HA-MRSA further classified as hospital-onset (HAHO-MRSA) or community-onset (HACO-MRSA) according to standard epidemiological definitions established by the U.S. Centers for Disease Control and Prevention (CDC). Genotypic analysis included SCC mec typing, spa typing, PFGE and MLST. Results Out of 538 total MRSA isolates, 68 (12.6%) were defined as CA-MRSA, 243 (45.2%) as HACO-MRSA and 227 (42.2%) as HAHO-MRSA. The majority harbored SCC mec type IVc (306, 58.7%), followed by SCC mec type I (174, 33.4%). The prevalence of type IVc among CA-, HACO- and HAHO-MRSA isolates was 92.4%, 65.1% and 43.6%, respectively. From 2008 to 2010, the prevalence of type IVc-bearing strains increased significantly, from 50.0% to 68.2% ( p = 0.004). Strains harboring SCC mec IVc were mainly associated with spa types t1610, t008 and t024 (MLST clonal complex 8), while PFGE confirmed that the t008 and t1610 strains were closely related to the USA300-0114 CA-MRSA clone. Notably, strains belonging to these three spa types exhibited high levels of tetracycline resistance (45.9%). Conclusion CC8 MRSA strains harboring SCC mec type IVc are becoming predominant in Medellín hospitals, displacing previously reported CC5 HA-MRSA clones. Based on shared characteristics including SCC mec IVc, absence of the ACME element and tetracycline resistance, the USA300-related isolates in this study are most likely related to USA300-LV, the recently-described ‘Latin American variant’ of USA300.
g Carbapenem-resistant Pseudomonas aeruginosa has become a serious health threat worldwide due to the limited options available for its treatment. Understanding its epidemiology contributes to the control of antibiotic resistance. The aim of this study was to describe the clinical and molecular characteristics of infections caused by carbapenem-resistant P. aeruginosa isolates in five tertiary-care hospitals in Medellín, Colombia. A cross-sectional study was conducted in five tertiary-care hospitals from June 2012 to March 2014. All hospitalized patients infected by carbapenem-resistant P. aeruginosa were included. Clinical information was obtained from medical records. Molecular analyses included PCR for detection of bla VIM , bla IMP , bla NDM , bla OXA-48 , and bla KPC genes plus pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) for molecular typing. A total of 235 patients were enrolled: 91.1% of them were adults (n ؍ 214), 88.1% (n ؍ 207) had prior antibiotic use, and 14.9% (n ؍ 35) had urinary tract infections. The bla VIM-2 and bla KPC-2 genes were detected in 13.6% (n ؍ 32) and 11.5% (n ؍ 27), respectively, of all isolates. Two isolates harbored both genes simultaneously. For KPC-producing isolates, PFGE revealed closely related strains within each hospital, and sequence types (STs) ST362 and ST235 and two new STs were found by MLST. With PFGE, VIM-producing isolates appeared highly diverse, and MLST revealed ST111 in four hospitals and five new STs. These results show that KPC-producing P. aeruginosa is currently disseminating rapidly and occurring at a frequency similar to that of VIM-producing P. aeruginosa isolates (approximately 1:1 ratio) in Medellín, Colombia. Diverse genetic backgrounds among resistant strains suggest an excessive antibiotic pressure resulting in the selection of resistant strains.
Virulence and antibiotic resistance are significant determinants of the types of infections caused by
Objectives: The objectives were to evaluate the diagnostic accuracy for sepsis in an emergency department (ED) population of the cluster of differentiation-64 (CD64) glycoprotein expression on the surface of neutrophils (nCD64), serum levels of soluble triggering receptor expressed on myeloid cells-1 (s-TREM-1), and high-mobility group box-1 protein (HMGB-1).Methods: Patients with any of the following as admission diagnosis were enrolled: 1) suspected infection, 2) fever, 3) delirium, or 4) acute hypotension of unexplained origin within 24 hours of ED presentation. Levels of nCD64, HMGB-1, and s-TREM-1 were measured within the first 24 hours of the first ED evaluation. Baseline clinical data, Sepsis-related Organ Failure Assessment (SOFA) score, Acute Physiology and Chronic Health Evaluation (APACHE II) score, daily clinical and microbiologic information, and 28-day mortality rate were collected. Because there is not a definitive criterion standard for sepsis, the authors used expert consensus based on clinical, microbiologic, laboratory, and radiologic data collected for each patient during the first 7 days of hospitalization. This expert consensus defined the primary outcome of sepsis, and the primary data analysis was based in the comparison of sepsis versus nonsepsis patients. The cut points to define sensitivity and specificity values, as well as positive and negative likelihood ratios (LRs) for the markers related to sepsis diagnosis, were determined using receiver operative characteristics (ROC) curves. The patients in this study were a prespecified nested subsample population of a larger study.Results: Of 631 patients included in the study, 66% (95% confidence interval [CI] = 62% to 67%, n = 416) had sepsis according with the expert consensus diagnosis. Among these sepsis patients, SOFA score defined 67% (95% CI = 62% to 71%, n = 277) in severe sepsis and 1% (95% CI = 0.3% to 3%, n = 6) in septic shock. The sensitivities for sepsis diagnosis were CD64, 65.8% (95% CI = 61.1% to 70.3%); HMGB-1, 57.5% (95% CI = 52.7% to 62.3%); and s-TREM-1, 60% (95% CI = 55.2% to 64.7%). The specificities were CD64, 64.6% (95% CI = 57.8% to 70.8%), HMGB-1, 57.8% (95% CI = 51.1% to 64.3%), and s-TREM-1, 59.2% (95% CI = 52.5% to 65.6%). The positive LR (LR+) for CD64 was 1.85 (95% CI = 1.52 to 2.26) and the negative LR (LR-) was 0.52 (95% CI = 0.44 to 0.62]; for HMGB-1 the LR+ was 1.36 (95% CI = 1.14 to 1.63) and LR-was 0.73 (95% CI = 0.62 to 0.86); and for s-TREM-1 the LR+ was 1.47 (95%
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.