Objective To conduct a genome-wide association study (GWAS) of anorexia nervosa and to calculate genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. Method Following uniform quality control and imputation using the 1000 Genomes Project (phase 3) in 12 case-control cohorts comprising 3,495 anorexia nervosa cases and 10,982 controls, we performed standard association analysis followed by a meta-analysis across cohorts. Linkage disequilibrium score regression (LDSC) was used to calculate genome-wide common variant heritability [ hSNP2, partitioned heritability, and genetic correlations (rg)] between anorexia nervosa and other phenotypes. Results Results were obtained for 10,641,224 single nucleotide polymorphisms (SNPs) and insertion-deletion variants with minor allele frequency > 1% and imputation quality scores > 0.6. The hSNP2 of anorexia nervosa was 0.20 (SE=0.02), suggesting that a substantial fraction of the twin-based heritability arises from common genetic variation. We identified one genome-wide significant locus on chromosome 12 (rs4622308, p=4.3×10−9) in a region harboring a previously reported type 1 diabetes and autoimmune disorder locus. Significant positive genetic correlations were observed between anorexia nervosa and schizophrenia, neuroticism, educational attainment, and high density lipoprotein (HDL) cholesterol, and significant negative genetic correlations between anorexia nervosa and body mass index, insulin, glucose, and lipid phenotypes. Conclusions Anorexia nervosa is a complex heritable phenotype for which we have found the first genome-wide significant locus. Anorexia nervosa also has large and significant genetic correlations with both psychiatric phenotypes and metabolic traits. Our results encourage a reconceptualization of this frequently lethal disorder as one with both psychiatric and metabolic etiology.
Glucagon and thyroid hormone (T) exhibit therapeutic potential for metabolic disease but also exhibit undesired effects. We achieved synergistic effects of these two hormones and mitigation of their adverse effects by engineering chemical conjugates enabling delivery of both activities within one precisely targeted molecule. Coordinated glucagon and T actions synergize to correct hyperlipidemia, steatohepatitis, atherosclerosis, glucose intolerance, and obesity in metabolically compromised mice. We demonstrate that each hormonal constituent mutually enriches cellular processes in hepatocytes and adipocytes via enhanced hepatic cholesterol metabolism and white fat browning. Synchronized signaling driven by glucagon and T reciprocally minimizes the inherent harmful effects of each hormone. Liver-directed T action offsets the diabetogenic liability of glucagon, and glucagon-mediated delivery spares the cardiovascular system from adverse T action. Our findings support the therapeutic utility of integrating these hormones into a single molecular entity that offers unique potential for treatment of obesity, type 2 diabetes, and cardiovascular disease.
Dedifferentiation of insulin-secreting β cells in the islets of Langerhans has been proposed to be a major mechanism of β-cell dysfunction. Whether dedifferentiated β cells can be targeted by pharmacological intervention for diabetes remission, and ways in which this could be accomplished, are unknown as yet. Here we report the use of streptozotocin-induced diabetes to study β-cell dedifferentiation in mice. Single-cell RNA sequencing (scRNA-seq) of islets identified markers and pathways associated with β-cell dedifferentiation and dysfunction. Single and combinatorial pharmacology further show that insulin treatment triggers insulin receptor pathway activation in β cells and restores maturation and function for diabetes remission. Additional β-cell selective delivery of oestrogen by Glucagon-like peptide-1 (GLP-1-oestrogen conjugate) decreases daily insulin requirements by 60%, triggers oestrogen-specific activation of the endoplasmic-reticulum-associated protein degradation system, and further increases β-cell survival and regeneration. GLP-1-oestrogen also protects human β cells against cytokineinduced dysfunction. This study not only describes mechanisms of β-cell dedifferentiation and regeneration, but also reveals pharmacological entry points to target dedifferentiated β cells for diabetes remission.There are amendments to this paper NATURE METABoLiSM | VOL 2 | FEBRUARy 2020 | 192-209 | www.nature.com/natmetab 192 Articles NATuRE METAboLiSM autoimmunity in the mSTZ model permits the investigation of the fate of those remaining β cells and the effect of pharmacological treatment on β-cell protection and regeneration.
Glucocorticoids (GCs) are important regulators of systemic energy metabolism, and aberrant GC action is linked to metabolic dysfunctions. Yet, the extent to which normal and pathophysiological energy metabolism depend on the GC receptor (GR) in adipocytes remains unclear. Here, we demonstrate that adipocyte GR deficiency in mice significantly impacts systemic metabolism in different energetic states. Plasma metabolomics and biochemical analyses revealed a marked global effect of GR deficiency on systemic metabolite abundance and, thus, substrate partitioning in fed and fasted states. This correlated with a decreased lipolytic capacity of GR-deficient adipocytes under postabsorptive and fasting conditions, resulting from impaired signal transduction from β-adrenergic receptors to adenylate cyclase. Upon prolonged fasting, the impaired lipolytic response resulted in abnormal substrate utilization and lean mass wasting. Conversely, GR deficiency attenuated aging-/diet-associated obesity, adipocyte hypertrophy, and liver steatosis. Systemic glucose tolerance was improved in obese GR-deficient mice, which was associated with increased insulin signaling in muscle and adipose tissue. We conclude that the GR in adipocytes exerts central but diverging roles in the regulation of metabolic homeostasis depending on the energetic state. The adipocyte GR is indispensable for the feeding-fasting transition but also promotes adiposity and associated metabolic disorders in fat-fed and aged mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.