The risk and potential consequences of mother-to-child transmission of severe acute respiratory syndrome-coronavirus type 2 (SARS-CoV-2) during pregnancy are still a matter of debate. We studied the impact of SARS-CoV-2 infection on 56 complete households, including 27 newborns whose mothers were pregnant when exposed to the virus. Two PCR-confirmed perinatal SARS-CoV-2 transmissions with mild symptoms in affected neonates were recorded. In addition, we observed a severe eye malformation (unilateral microphthalmia, optic nerve hypoplasia, and congenital retinopathy) associated with maternal SARS-CoV-2 infection in weeks 5 and 6 of embryonic development. This embryopathy could not be explained by other infectious agents, genetic factors, drug use, or maternal disease during pregnancy. Eight other women with a history of SARS-CoV-2 infection prior to gestational week 12, however, delivered healthy infants.Conclusion: The repeated occurrence of mother-to-child transmission in our cohort with risks that remain incompletely understood, such as long-term effects and the possibility of an embryopathy, should sensitize researchers and stimulate further studies as well as support COVID-19 vaccination recommendations for pregnant women. Trial registration number: NCT04741412. Date of registration: November 18, 2020 What is Known:•Materno-fetal transmission of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) during pregnancy has rarely been reported so far, but was demonstrated in isolated cases. What is New:•In a study of complete households with documented SARS-CoV-2 infection, including a cohort of pregnant women, we observed perinatal coronavirus transmission at a higher frequency than expected.•We also describe a newborn boy with an eye malformation reminiscent of rubella embryopathy but associated with early gestation SARS-CoV-2 infection of his mother.•A coronavirus-related embryopathy, reported here for the first time, is a finding that requires further investigation.
To keep pace with the rapid advancements in molecular genetics and rare diseases research, we have updated the list of ectodermal dysplasias based on the latest classification approach that was adopted in 2017 by an international panel of experts. For this purpose, we searched the databases PubMed and OMIM for the term “ectodermal dysplasia”, referring mainly to changes in the last 5 years. We also tried to obtain information about those diseases on which the last scientific report appeared more than 15 years ago by contacting the authors of the most recent publication. A group of experts, composed of researchers who attended the 8th International Conference on Ectodermal Dysplasias and additional members of the previous classification panel, reviewed the proposed amendments and agreed on a final table listing all 49 currently known ectodermal dysplasias for which the molecular genetic basis has been clarified, including 15 new entities. A newly reported ectodermal dysplasia, linked to the gene LRP6, is described here in more detail. These ectodermal dysplasias, in the strict sense, should be distinguished from syndromes with features of ectodermal dysplasia that are related to genes extraneous to the currently known pathways involved in ectodermal development. The latter group consists of 34 syndromes which had been placed on the previous list of ectodermal dysplasias, but most if not all of them could actually be classified elsewhere. This update should streamline the classification of ectodermal dysplasias, provide guidance to the correct diagnosis of rare disease entities, and facilitate the identification of individuals who could benefit from novel treatment options.
Background X-linked hypohidrotic ectodermal dysplasia (XLHED), a rare genetic disorder, affects the normal development of ectodermal derivatives, such as hair, skin, teeth, and sweat glands. It is caused by pathogenic variants of the gene EDA and defined by a triad of hypotrichosis, hypo- or anodontia, and hypo- or anhidrosis which may lead to life-threatening hyperthermia. Although female carriers are less severely affected than male patients, they display symptoms, too, with high phenotypic variability. This study aimed to elucidate whether phenotypic differences in female XLHED patients with identical EDA genotypes might be explained by deviating X-chromosome inactivation (XI) patterns. Methods Six families, each consisting of two sisters with the same EDA variant and their parents (with either mother or father being carrier of the variant), participated in this study. XLHED-related data like sweating ability, dental status, facial dysmorphism, and skin issues were assessed. We determined the women`s individual XI patterns in peripheral blood leukocytes by the human androgen receptor assay and collated the results with phenotypic features. Results The surprisingly large inter- and intrafamilial variability of symptoms in affected females was not explicable by the pathogenic variants. Our cohort showed no higher rate of nonrandom XI in peripheral blood leukocytes than the general female population. Furthermore, skewed XI patterns in favour of the mutated alleles were not associated with more severe phenotypes. Conclusions We found no evidence for preferential XI in female XLHED patients and no distinct correlation between XLHED-related phenotypic features and XI patterns. Phenotypic variability seems to be evoked by other genetic or epigenetic factors.
Deficiency of ectodysplasin A1 (EDA1) due to variants of the gene EDA causes X-linked hypohidrotic ectodermal dysplasia (XLHED), a rare genetic condition characterized by abnormal development of ectodermal structures. XLHED is defined by the triad of hypotrichosis, hypo- or anhidrosis, and hypo- or anodontia. Anhidrosis may lead to life-threatening hyperthermia. A definite genetic diagnosis is, thus, important for the patients’ management and amenability to a novel prenatal treatment option. Here, we describe five familial EDA variants segregating with the disease in three families, for which different prediction tools yielded discordant results with respect to their significance. Functional properties in vitro and levels of circulating serum EDA were compared with phenotypic data on skin, hair, eyes, teeth, and sweat glands. EDA1-Gly176Val, although associated with relevant hypohidrosis, still bound to the EDA receptor (EDAR). Subjects with EDA1-Pro389LeufsX27, -Ter392GlnfsX30, -Ser125Cys, and an EDA1 splice variant (c.924+7A > G) showed complete absence of pilocarpine-induced sweating. EDA1-Pro389LeufsX27 was incapable of binding to EDAR and undetectable in serum. EDA1-Ter392GlnfsX30, produced in much lower amounts than wild-type EDA1, could still bind to EDAR, and so did EDA1-Ser125Cys that was, however, undetectable in serum. The EDA splice variant c.924+7A > G resulted experimentally in a mix of wild-type EDA1 and EDA molecules truncated in the middle of the receptor-binding domain, with reduced EDA serum concentration. Thus, in vitro assays reflected the clinical phenotype in two of these difficult cases, but underestimated it in three others. Absence of circulating EDA seems to predict the full-blown phenotype of XLHED, while residual EDA levels may also be found in anhidrotic patients. This indicates that unborn subjects carrying variants of uncertain significance could benefit from an upcoming prenatal medical treatment even if circulating EDA levels or tests in vitro suggest residual EDA1 activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.