Renal cell carcinoma (RCC) and normal kidney tissues have been examined from 34 patients with sporadic, nonhereditary RCC. Eighteen of the 21 cytogenetically examined tumors (86%) had a detectable anomaly of chromosome arm 3p distal to band 3pll.2-pl3, manifested as a deletion, combined with the nonreciprocal translocation of a segment from another chromosome or monosomy 3. Restriction-fragment-length polymorphism analysis showed loss of DISI heterozygosity in 16 of the 21 cases (76%). D3S2 heterozygosity was lost in 2 of 11 cases (18%). The variability of the breakpoint between 3pll.2 and 3p13 and the absence of a consistently translocated segment from another chromosome suggests a genetic-loss mechanism, while the activation of a dominant oncogene appears less likely. Together with the previously demonstrated involvement of the 3pl4.2 region in a familial case, these rmdings suggest that RCCs may arise by the deletion of a "recessive cancer gene," as do retinoblastoma and Wilms tumor. The relevant locus must be located on the telomeric side of the DISI locus on the short arm of chromosome 3.
SummaryThe distal half of chromosome 1p was analysed with 15 polymorphic microsatellite markers in 683 human solid tumours at different locations. Loss of heterozygosity (LOH) was observed at least at one site in 369 cases or 54% of the tumours. LOHs detected ranged from 30-64%, depending on tumour location. The major results regarding LOH at different tumour locations were as follows: stomach, 20/38 (53%); colon and rectum, 60/109 (55%); lung, 38/63 (60%); breast, 145/238 (61%); endometrium, 18/25 (72%); ovary, 17/31 (55%); testis, 11/30 (37%); kidney, 22/73 (30%); thyroid, 4/14 (29%); and sarcomas, 9/14 (64%). High percentages of LOH were seen in the 1p36.3, 1p36.1, 1p35-p34.3, 1p32 and 1p31 regions, suggesting the presence of tumour-suppressor genes. All these regions on chromosome 1p show high LOH in more than one tumour type. However, distinct patterns of LOH were detected at different tumour locations. There was a significant separation of survival curves, with and without LOH at chromosome 1p, in the breast cancer patients. Multivariate analysis showed that LOH at 1p in breast tumours is a better indicator for prognosis than the other variables tested in our model, including nodal metastasis.
An emerging paradigm holds that loss of negative signalling to receptor tyrosine kinases (RTKs) is permissive for their oncogenic activity. Herein, we have addressed tumor suppression by RALT/MIG-6, a transcriptionally controlled feedback inhibitor of ErbB RTKs, in breast cancer cells. Knockdown of RALT expression by RNAi enhanced the EGF-dependent proliferation of normal breast epithelial cells, indicating that loss of RALT signalling in breast epithelium may represent an advantageous condition during ErbB-driven tumorigenesis. Although mutational inactivation of the RALT gene was not detected in human breast carcinomas, RALT mRNA and protein expression was strongly and selectively reduced in ERBB2-amplified breast cancer cell lines. Reconstitution of RALT expression in ERBB2-amplified SKBr-3 and BT474 cells inhibited ErbB-2-dependent mitogenic signalling and counteracted the ability of ErbB ligands to promote resistance to the ErbB-2-targeting drug Herceptin. Thus, loss of RALT expression cooperates with ERBB2 gene amplification to drive full oncogenic signalling by the ErbB-2 receptor. Moreover, loss of RALT signalling may adversely affect tumor responses to ErbB-2-targeting agents.
We have studied a set of 40 human lobular breast cancers for loss of heterozygosity (LOH) at various chromosome locations and for mutations in the coding region plus flanking intron sequences of the E-cadherin gene. We found a high frequency of LOH (100%, 31/31) at 16q21–q22.1. A significantly higher level of LOH was detected in ductal breast tumours at chromosome arms 1p, 3p, 9p, 11q, 13q and 18q compared to lobular breast tumours. Furthermore, we found a significant association between LOH at 16 q containing the E-cadherin locus and lobular histological type. Six different somatic mutations were detected in the E-cadherin gene, of which three were insertions, two deletions and one splice site mutation. Mutations were found in combination with LOH of the wild type E-cadherin locus and loss of or reduced E-cadherin expression detected by immunohistochemistry. The mutations described here have not previously been reported. We compared LOH at different chromosome regions with E-cadherin gene mutations and found a significant association between LOH at 13 q and E-cadherin gene mutations. A significant association was also detected between LOH at 13q and LOH at 7q and 11q. Moreover, we found a significant association between LOH at 3 p and high S phase, LOH at 9p and low ER and PgR content, LOH at 17p and aneuploidy. We conclude that LOH at 16q is the most frequent chromosome alteration and E-cadherin is a typical tumour suppressor gene in lobular breast cancer. © 1999 Cancer Research Campaign
There are three prolyl hydroxylases (PHD1, 2 and 3) that regulate the hypoxia-inducible factors (HIFs), the master transcriptional regulators that respond to changes in intracellular O(2) tension. In high O(2) tension (normoxia) the PHDs hydroxylate two conserved proline residues on HIF-1α, which leads to binding of the von Hippel-Lindau (VHL) tumour suppressor, the recognition component of a ubiquitin-ligase complex, initiating HIF-1α ubiquitylation and degradation. However, it is not known whether PHDs and VHL act separately to exert their enzymatic activities on HIF-1α or as a multiprotein complex. Here we show that the tumour suppressor protein LIMD1 (LIM domain-containing protein) acts as a molecular scaffold, simultaneously binding the PHDs and VHL, thereby assembling a PHD-LIMD1-VHL protein complex and creating an enzymatic niche that enables efficient degradation of HIF-1α. Depletion of endogenous LIMD1 increases HIF-1α levels and transcriptional activity in both normoxia and hypoxia. Conversely, LIMD1 expression downregulates HIF-1 transcriptional activity in a manner depending on PHD and 26S proteasome activities. LIMD1 family member proteins Ajuba and WTIP also bind to VHL and PHDs 1 and 3, indicating that these LIM domain-containing proteins represent a previously unrecognized group of hypoxic regulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.