Highlights d Cities possess a consistent ''core'' set of non-human microbes d Urban microbiomes echo important features of cities and city-life d Antimicrobial resistance genes are widespread in cities d Cities contain many novel bacterial and viral species
Pathogens frequently associated with multi-drug resistant (MDR) phenotypes, including extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae (ESBL-E) and Acinetobacter baumannii isolated from horses admitted to horse clinics, pose a risk for animal patients and personnel in horse clinics. To estimate current rates of colonization, a total of 341 equine patients were screened for carriage of zoonotic indicator pathogens at hospital admission. Horses showing clinical signs associated with colic (n = 233) or open wounds (n = 108) were selected for microbiological examination of nostril swabs, faecal samples and wound swabs taken from the open wound group. The results showed alarming carriage rates of Gram-negative MDR pathogens in equine patients: 10.7% (34 of 318) of validated faecal specimens were positive for ESBL-E (94%: ESBL-producing Escherichia coli), with recorded rates of 10.5% for the colic and 11% for the open wound group. 92.7% of the ESBL-producing E. coli were phenotypically resistant to three or more classes of antimicrobials. A. baumannii was rarely detected (0.9%), and all faecal samples investigated were negative for Salmonella, both directly and after two enrichment steps. Screening results for the equine nostril swabs showed detection rates for ESBL-E of 3.4% among colic patients and 0.9% in the open wound group, with an average rate of 2.6% (9/340) for both indications. For all 41 ESBL-producing E. coli isolated, a broad heterogeneity was revealed using pulsed-field gel electrophoresis (PFGE) patterns and whole genome sequencing (WGS) -analysis. However, a predominance of sequence type complex (STC)10 and STC1250 The results of this study reveal a disturbingly large fraction of multi-drug resistant and ESBL-producing E. coli among equine patients, posing a clear threat to established hygiene management systems and work-place safety of veterinary staff in horse clinics.
Previous research identified veterinary clinics as hotspots with respect to accumulation and spread of multidrug resistant extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (EC). Therefore, promoting the prudent use of antibiotics to decrease selective pressure in that particular clinical environment is preferable to enhance biosecurity for animal patients and hospital staff. Accordingly, this study comparatively investigated the impact of two distinct perioperative antibiotic prophylaxis (PAP) regimens (short-term versus prolonged) on ESBL-EC carriage of horses subjected to colic surgery. While all horses received a combination of penicillin/gentamicin (P/G) as PAP, they were assigned to either the “single-shot group” (SSG) or the conventional “5-day group” (5DG). Fecal samples collected on arrival (t0), on the 3rd (t1) and on the 10th day after surgery (t2) were screened for ESBL-EC. All isolates were further investigated using whole genome sequences. In total, 81 of 98 horses met the inclusion criteria for this study. ESBL-EC identified in samples available at t0, t1 and t2 were 4.8% (SSG) and 9.7% (5DG), 37% (SSG) and 47.2% (5DG) as well as 55.6% (SSG) and 56.8% (5DG), respectively. Regardless of the P/G PAP regimen, horses were 9.12 times (95% CI 2.79–29.7) more likely to carry ESBL-EC at t1 compared to t0 (p < 0.001) and 15.64 times (95% CI 4.57–53.55) more likely to carry ESBL-EC at t2 compared to t0 (p < 0.001). ESBL-EC belonging to sequence type (ST) 10, ST86, ST641, and ST410 were the most prevalent lineages, with blaCTX–M–1 (60%) being the dominant ESBL gene. A close spatio-temporal relationship between isolates sharing a particular ST was revealed by genome analysis, strongly indicating local spread. Consequently, hospitalization itself has a strong impact on ESBL-EC isolation rates in horses, possibly masking differences between distinct PAP regimens. The results of this study reveal accumulation and spread of multi-drug resistant ESBL-EC among horses subjected to colic surgery with different P/G PAP regimens, challenging the local hygiene management system and work-place safety of veterinary staff. Moreover, the predominance of particular ESBL-EC lineages in clinics providing health care for horses needs further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.