We report the clinical description and molecular dissection of a new fatal human inherited disorder characterized by chronic auto-inflammation, invasive bacterial infections and muscular amylopectinosis. Patients from two kindreds carried biallelic loss-of-expression and loss-of-function mutations in HOIL1, a component the linear ubiquitination chain assembly complex (LUBAC). These mutations resulted in impairment of LUBAC stability. NF-κB activation in response to interleukin-1β (IL-1β) was compromised in the patients’ fibroblasts. By contrast, the patients’ mononuclear leukocytes, particularly monocytes, were hyperresponsive to IL-1β. The consequences of human HOIL-1 and LUBAC deficiencies for IL-1β responses thus differed between cell types, consistent with the unique association of auto-inflammation and immunodeficiency in these patients. These data suggest that LUBAC regulates NF-κB-dependent IL-1β responses differently in different cell types.
Osteopetrosis includes a group of inherited diseases in which inadequate bone resorption is caused by osteoclast dysfunction. Although molecular defects have been described for many animal models of osteopetrosis, the gene responsible for most cases of the severe human form of the disease (infantile malignant osteopetrosis) is unknown. Infantile malignant autosomal recessive osteopetrosis (MIM 259700) is a severe bone disease with a fatal outcome, generally within the first decade of life. Osteoclasts are present in normal or elevated numbers in individuals affected by autosomal recessive osteopetrosis, suggesting that the defect is not in osteoclast differentiation, but in a gene involved in the functional capacity of mature osteoclasts. Some of the mouse mutants have a decreased number of osteoclasts, which suggests that the defect directly interferes with osteoclast differentiation. In other mutants, it is the function of the osteoclast that seems to be affected, as they show normal or elevated numbers of non-functioning osteoclasts. Here we show that TCIRG1, encoding the osteoclast-specific 116-kD subunit of the vacuolar proton pump, is mutated in five of nine patients with a diagnosis of infantile malignant osteopetrosis. Our data indicate that mutations in TCIRG1 are a frequent cause of autosomal recessive osteopetrosis in humans.
Genomic rearrangement of the antigen receptor loci is initiated by the two lymphoid-specific proteins Rag-1 and Rag-2. Null mutations in either of the two proteins abrogate initiation of V(D)J recombination and cause severe combined immunodeficiency with complete absence of mature B and T lymphocytes. We report here that patients with Omenn syndrome, a severe immunodeficiency characterized by the presence of activated, anergic, oligoclonal T cells, hypereosinophilia, and high IgE levels, bear missense mutations in either the Rag-1 or Rag-2 genes that result in partial activity of the two proteins. Two of the amino acid substitutions map within the Rag-1 homeodomain and decrease DNA binding activity, while three others lower the efficiency of Rag-1/Rag-2 interaction. These findings provide evidence to indicate that the immunodeficiency manifested in patients with Omenn syndrome arises from mutations that decrease the efficiency of V(D)J recombination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.