Analysis of 179 new Ebola virus sequences from patient samples collected in Guinea between March 2014 and January 2015 shows how different lineages evolved and spread in West Africa.
Supplementary information
The online version of this article (doi:10.1038/nature14594) contains supplementary material, which is available to authorized users.
Objective:To evaluate the immune-specific response after the full SARS-CoV-2 vaccination of multiple sclerosis (MS) patients treated with different Disease Modifying drugs by the detection of both serological- and T-cell responses.Methods:Health care workers (HCWs) and MS patients, having completed the two-dose schedule of an mRNA-based vaccine against SARS-CoV-2 in the last 2-4 weeks, were enrolled from two parallel prospective studies conducted in Rome, Italy, at the National Institute for Infectious diseases Spallanzani–IRCSS and San Camillo Forlanini Hospital. Serological response was evaluated by quantifying the Region-Binding-Domain (RBD) and neutralizing-antibodies. Cell-mediated response was analyzed by a whole-blood test quantifying interferon (IFN)-γ response to spike peptides. Cells responding to spike stimulation were identified by FACS analysis.Results:We prospectively enrolled 186 vaccinated individuals: 78 HCWs and 108 MS patients. Twenty-eight MS patients were treated with IFN-β, 35 with fingolimod, 20 with cladribine, and 25 with ocrelizumab. A lower anti-RBD-antibody response rate was found in patients treated with ocrelizumab (40%, p<0.0001) and fingolimod (85.7%, p=0.0023) compared to HCWs and patients treated with cladribine or IFN-β. Anti-RBD-antibody median titer was lower in patients treated with ocrelizumab (p<0.0001), fingolimod (p<0.0001) and cladribine (p=0.010) compared to HCWs and IFN-β-treated patients. Importantly, serum neutralizing activity was present in all the HCWs tested and only in a minority of the fingolimod-treated patients (16.6%). T-cell-specific response was detected in the majority of MS patients (62%), albeit with significantly lower IFN-γ levels compared to HCWs. The lowest frequency of T-cell response was found in fingolimod-treated patients (14.3%). T-cell-specific response correlated with lymphocyte count and anti-RBD antibody titer (rho=0.554, p<0.0001 and rho=0.255, p=0.0078 respectively). Finally, IFN-γ T-cell response was mediated by both CD4+ and CD8+ T cells.Conclusion:mRNA vaccines induce both humoral and cell-mediated specific immune responses against spike peptides in all HCWs and in the majority of MS patients. These results carry relevant implications for managing vaccinations suggesting to promote vaccination in all treated MS patients.Classification of Evidence:This study provides Class III data that COVID mRNA vaccination induces both humoral and cell-mediated specific immune responses against viral spike proteins in a majority of MS patients.
Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD1. In particular, very little is known about human immune responses to Ebola virus (EBOV)2,3. Here, we have for the first time evaluated the physiology of the human T cell immune response in EVD patients at the time of admission at the Ebola Treatment Center (ETC) in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we have identified an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by high percentage of CD4 and CD8 T cells expressing the inhibitory molecules cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death-1 (PD-1), which was correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation despite comparable overall T cell activation. Concommittant with virus clearance, survivors mounted a robust EBOV-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.