Telaprevir 2 (VX-950), an inhibitor of the hepatitis C virus (HCV(a)) NS3-4A protease, is in phase 3 clinical trials. One of the major metabolites of 2 is its P1-(R)-diastereoisomer, 3 (VRT-394), containing an inversion at the chiral center next to the alpha-ketoamide on exchange of a proton with solvent. Compound 3 is approximately 30-fold less active against HCV protease. In an attempt to suppress the epimerization of 2 without losing activity against the HCV protease, the proton at that chiral site was replaced with deuterium (d). The compound 1 (d-telaprevir) is as efficacious as 2 in in vitro inhibition of protease activity and viral replication (replicon) assays. The kinetics of in vitro stability of 1 and 2 in buffered pH solutions and plasma samples, including human plasma, suggest that 1 is significantly more stable than 2. Oral administration (10 mg/kg) in rats resulted in a approximately 13% increase of AUC for 1.
Compound 3 is a potent aminobenzimidazole urea with broad-spectrum Gram-positive antibacterial activity resulting from dual inhibition of bacterial gyrase (GyrB) and topoisomerase IV (ParE), and it demonstrates efficacy in rodent models of bacterial infection. Preclinical in vitro and in vivo studies showed that compound 3 covalently labels liver proteins, presumably via formation of a reactive metabolite, and hence presented a potential safety liability. The urea moiety in compound 3 was identified as being potentially responsible for reactive metabolite formation, but its replacement resulted in loss of antibacterial activity and/or oral exposure due to poor physicochemical parameters. To identify second-generation aminobenzimidazole ureas devoid of reactive metabolite formation potential, we implemented a metabolic shift strategy, which focused on shifting metabolism away from the urea moiety by introducing metabolic soft spots elsewhere in the molecule. Aminobenzimidazole urea 34, identified through this strategy, exhibits similar antibacterial activity as that of 3 and did not label liver proteins in vivo, indicating reduced/no potential for reactive metabolite formation.
While several therapeutic options exist, the need for more effective, safe, and convenient treatment for a variety of autoimmune diseases persists. Targeting the Janus tyrosine kinases (JAKs), which play essential roles in cell signaling responses and can contribute to aberrant immune function associated with disease, has emerged as a novel and attractive approach for the development of new autoimmune disease therapies. We screened our compound library against JAK3, a key signaling kinase in immune cells, and identified multiple scaffolds showing good inhibitory activity for this kinase. A particular scaffold of interest, the 1H-pyrrolo[2,3-b]pyridine series (7-azaindoles), was selected for further optimization in part on the basis of binding affinity (Ki) as well as on the basis of cellular potency. Optimization of this chemical series led to the identification of VX-509 (decernotinib), a novel, potent, and selective JAK3 inhibitor, which demonstrates good efficacy in vivo in the rat host versus graft model (HvG). On the basis of these findings, it appears that VX-509 offers potential for the treatment of a variety of autoimmune diseases.
(R)-2-((2-(1H-pyrrolo [2,3-b]pyridin-3-yl)pyrimidin-4-yl)amino)-2-methyl-N-(2,2,2-trifluoroethyl)butanamide decernotinib) is an oral Janus kinase 3 inhibitor that has been studied in patients with rheumatoid arthritis. Patients with rheumatoid arthritis often receive multiple medications, such as statins and steroids, to manage the signs and symptoms of comorbidities, which increases the chances of drug-drug interactions (DDIs). Mechanism-based inhibition is a subset of time-dependent inhibition (TDI) and occurs when a molecule forms a reactive metabolite which irreversibly binds and inactivates drug-metabolizing enzymes, potentially increasing the systemic load to toxic concentrations. Traditionally, perpetrating compounds are screened using human liver microsomes (HLMs); however, this system may be inadequate when the precipitant is activated by a non-cytochrome P450 (P450)-mediated pathway. Even though studies assessing competitive inhibition and TDI using HLM suggested a low risk for CYP3A4-mediated DDI in the clinic, VX-509 increased the area under the curve of midazolam, atorvastatin, and methyl-prednisolone by approximately 12.0-, 2.7-, and 4.3-fold, respectively. Metabolite identification studies using human liver cytosol indicated that VX-509 is converted to an oxidative metabolite, which is the perpetrator of the DDIs observed in the clinic. As opposed to HLM, hepatocytes contain the full complement of drug-metabolizing enzymes and transporters and can be used to assess TDI arising from non-P450-mediated metabolic pathways. In the current study, we highlight the role of aldehyde oxidase in the formation of the hydroxylmetabolite of VX-509, which is involved in clinically significant TDIbased DDIs and represents an additional example in which a system-dependent prediction of TDI would be evident.
This study aims to investigate the effects of dietary gamma-aminobutyric acid (GABA) supplementation on the growth performance, intestinal immunity, intestinal GABAergic system, amino acid profiles and gut microflora of the weaned piglets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.