Summary Apicomplexan parasites cause major human disease and food insecurity. They owe their considerable success to highly specialized cell compartments and structures. These adaptations drive their recognition, nondestructive penetration, and elaborate reengineering of the host’s cells to promote their growth, dissemination, and the countering of host defenses. The evolution of unique apicomplexan cellular compartments is concomitant with vast proteomic novelty. Consequently, half of apicomplexan proteins are unique and uncharacterized. Here, we determine the steady-state subcellular location of thousands of proteins simultaneously within the globally prevalent apicomplexan parasite Toxoplasma gondii . This provides unprecedented comprehensive molecular definition of these unicellular eukaryotes and their specialized compartments, and these data reveal the spatial organizations of protein expression and function, adaptation to hosts, and the underlying evolutionary trajectories of these pathogens.
Genome-wide CRISPR screening is a powerful tool to identify genes required under selective conditions. However, the inherent scale of genome-wide libraries can limit their application in experimental settings where cell numbers are restricted, such as in vivo infections or single cell analysis. The use of small scale CRISPR libraries targeting gene subsets circumvents this problem. Here we develop a method for rapid generation of custom guide RNA (gRNA) libraries using arrayed single-stranded oligonucleotides for reproducible pooled cloning of CRISPR/Cas9 libraries. We use this system to generate mutant pools of different sizes in the protozoan parasite Toxoplasma gondi and describe optimised analysis methods for small scale libraries. An in vivo genetic screen in the murine host identifies novel and known virulence factors and we confirm results using cloned knock-out parasites. Our study also reveals a potential trans-rescue of individual knock-out parasites in pools of mutants compared to homogenous knock-out lines of the key virulence factor MYR1.
Apicomplexan parasites cause major human disease and food insecurity. They owe their considerable success to novel, highly specialized cell compartments and structures. These adaptations drive their recognition and nondestructive penetration of host's cells and the elaborate reengineering of these cells to promote growth, dissemination, and the countering of host defenses. The evolution of unique apicomplexan cellular compartments is concomitant with vast proteomic novelty that defines these new cell organizations and their functions. Consequently, half of apicomplexan proteins are unique and uncharacterized, and these cells are, therefore, very poorly understood. Here, we determine the steadystate subcellular location of thousands of proteins simultaneously within the globally prevalent apicomplexan parasite Toxoplasma gondii. This provides unprecedented comprehensive molecular definition to these cells and their novel compartments, and these data reveal the spatial organizations of protein expression and function, adaptation to hosts, and the underlying evolutionary trajectories of these pathogens.
Apicomplexan parasites have an immense impact on humanity, but their basic cellular processes are often poorly understood. The sites of endocytosis, the conservation of this process with other eukaryotes, and its functions across Apicomplexa are major unanswered questions. Yet endocytosis in Plasmodium is implicated in antimalarial drug failure. Using the apicomplexan model Toxoplasma, we identified the molecular composition and behavior of unusual, fixed endocytic structures. Here, stable complexes of endocytic proteins differ markedly from the dynamic assembly/disassembly of these machineries in other eukaryotes. Moreover, conserved molecular adaptation of this structure is seen in Apicomplexa, including the kelch-domain protein K13 central to malarial drug-resistance. We determine that an essential function of endocytosis in Toxoplasma is plasma membrane homeostasis, rather than parasite nutrition, and that these specialized endocytic structures originated early in infrakingdom Alveolata, likely in response to the complex cell pellicle that defines this medically and ecologically important ancient eukaryotic lineage.
Apicomplexan parasites have immense impacts on humanity, but their basic cellular processes are often poorly understood. Where endocytosis occurs in these cells, how conserved this process is with other eukaryotes, and what the functions of endocytosis are across this phylum are major unanswered questions. Using the apicomplexan model Toxoplasma, we identified the molecular composition and behavior of unusual, fixed endocytic structures. Here, stable complexes of endocytic proteins differ markedly from the dynamic assembly/disassembly of these machineries in other eukaryotes. We identify that these endocytic structures correspond to the ‘micropore’ that has been observed throughout the Apicomplexa. Moreover, conserved molecular adaptation of this structure is seen in apicomplexans including the kelch-domain protein K13 that is central to malarial drug-resistance. We determine that a dominant function of endocytosis in Toxoplasma is plasma membrane homeostasis, rather than parasite nutrition, and that these specialized endocytic structures originated early in infrakingdom Alveolata likely in response to the complex cell pellicle that defines this medically and ecologically important ancient eukaryotic lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.