The femtosecond laser direct-writing (FLDW) of waveguide circuits in glasses has seen interest from a number of fields over the previous 20 years. It has evolved from a curiosity to a viable platform for the rapid prototyping of small scale circuits. The field of quantum information science has exploited this capability and in the process advanced the fabrication technique. In this review the technological aspects of the laser inscription method relevant to quantum information science will be discussed. A range of demonstrations which have been enabled by laser written circuits will be outlined; these include novel circuits, simulations, photon sources and detection. This places the FLDW technique among the few integrated optical platforms to have produced individually every component required for scalable quantum computation.
A flexible and versatile monitoring system is presented, delivering camera-like access to otherwise hardly accessible field dynamics with nanotesla resolution. Its stand-alone nature enables field analysis even during unknown MR system states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.