IMPORTANCE Safety surveillance of vaccines against COVID-19 is critical to ensure safety, maintain trust, and inform policy.OBJECTIVES To monitor 23 serious outcomes weekly, using comprehensive health records on a diverse population. DESIGN, SETTING, AND PARTICIPANTSThis study represents an interim analysis of safety surveillance data from Vaccine Safety Datalink. The 10 162 227 vaccine-eligible members of 8 participating US health plans were monitored with administrative data updated weekly and supplemented with medical record review for selected outcomes from December 14, 2020, through June 26, 2021.EXPOSURES Receipt of BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) COVID-19 vaccination, with a risk interval of 21 days for individuals after vaccine dose 1 or 2 compared with an interval of 22 to 42 days for similar individuals after vaccine dose 1 or 2.MAIN OUTCOMES AND MEASURES Incidence of serious outcomes, including acute myocardial infarction, Bell palsy, cerebral venous sinus thrombosis, Guillain-Barré syndrome, myocarditis/pericarditis, pulmonary embolism, stroke, and thrombosis with thrombocytopenia syndrome. Incidence of events that occurred among vaccine recipients 1 to 21 days after either dose 1 or 2 of a messenger RNA (mRNA) vaccine was compared with that of vaccinated concurrent comparators who, on the same calendar day, had received their most recent dose 22 to 42 days earlier. Rate ratios (RRs) were estimated by Poisson regression, adjusted for age, sex, race and ethnicity, health plan, and calendar day. For a signal, a 1-sided P < .0048 was required to keep type I error below .05 during 2 years of weekly analyses. For 4 additional outcomes, including anaphylaxis, only descriptive analyses were conducted.RESULTS A total of 11 845 128 doses of mRNA vaccines (57% BNT162b2; 6 175 813 first doses and 5 669 315 second doses) were administered to 6.2 million individuals (mean age, 49 years; 54% female individuals). The incidence of events per 1 000 000 person-years during the risk vs comparison intervals for ischemic stroke was 1612 vs 1781 (RR, 0.97; 95% CI, 0.87-1.08); for appendicitis, 1179 vs 1345 (RR, 0.82; 95% CI, 0.73-0.93); and for acute myocardial infarction, 935 vs 1030 (RR, 1.02; 95% CI, 0.89-1.18). No vaccine-outcome association met the prespecified requirement for a signal. Incidence of confirmed anaphylaxis was 4.8 (95% CI, 3.2-6.9) per million doses of BNT162b2 and 5.1 (95% CI, 3.3-7.6) per million doses of mRNA-1273. CONCLUSIONS AND RELEVANCEIn interim analyses of surveillance of mRNA COVID-19 vaccines, incidence of selected serious outcomes was not significantly higher 1 to 21 days postvaccination compared with 22 to 42 days postvaccination. While CIs were wide for many outcomes, surveillance is ongoing.
Background Anaphylaxis is a potentially life-threatening allergic reaction. The risk of anaphylaxis after vaccination has not been well described in adults or with newer vaccines in children. Objective We sought to estimate the incidence of anaphylaxis after vaccines and describe the demographic and clinical characteristics of confirmed cases of anaphylaxis. Methods Using health care data from the Vaccine Safety Datalink, we determined rates of anaphylaxis after vaccination in children and adults. We first identified all patients with a vaccination record from January 2009 through December 2011 and used diagnostic and procedure codes to identify potential anaphylaxis cases. Medical records of potential cases were reviewed. Confirmed cases met the Brighton Collaboration definition for anaphylaxis and had to be determined to be vaccine triggered. We calculated the incidence of anaphylaxis after all vaccines combined and for selected individual vaccines. Results We identified 33 confirmed vaccine-triggered anaphylaxis cases that occurred after 25,173,965 vaccine doses. The rate of anaphylaxis was 1.31 (95% CI, 0.90-1.84) per million vaccine doses. The incidence did not vary significantly by age, and there was a nonsignificant female predominance. Vaccine-specific rates included 1.35 (95% CI, 0.65-2.47) per million doses for inactivated trivalent influenza vaccine (10 cases, 7,434,628 doses given alone) and 1.83 (95% CI, 0.22-6.63) per million doses for inactivated monovalent influenza vaccine (2 cases, 1,090,279 doses given alone). The onset of symptoms among cases was within 30 minutes (8 cases), 30 to less than 120 minutes (8 cases), 2 to less than 4 hours (10 cases), 4 to 8 hours (2 cases), the next day (1 case), and not documented (4 cases). Conclusion Anaphylaxis after vaccination is rare in all age groups. Despite its rarity, anaphylaxis is a potentially life-threatening medical emergency that vaccine providers need to be prepared to treat.
WHAT'S KNOWN ON THIS SUBJECT:We previously alerted the ACIP to preliminary evidence of a twofold increased risk of febrile seizures after MMRV when compared with separate MMR and varicella vaccines after monitoring with the VSD RCA surveillance system. WHAT THIS STUDY ADDS:Using VSD data on twice as many vaccines, we examined the effect of MMRV on risk of seizure and describe here the postvaccination risk interval for increased fever and febrile seizures after vaccination. abstract OBJECTIVE: In February 2008, we alerted the Advisory Committee on Immunization Practices to preliminary evidence of a twofold increased risk of febrile seizures after the combination measles-mumps-rubella-varicella (MMRV) vaccine when compared with separate measles-mumps-rubella (MMR) and varicella vaccines. Now with data on twice as many vaccine recipients, our goal was to reexamine seizure risk after MMRV vaccine. METHODS: Using 2000 -2008Vaccine Safety Datalink data, we assessed seizures and fever visits among children aged 12 to 23 months after MMRV and separate MMR ϩ varicella vaccines. We compared seizure risk after MMRV vaccine to that after MMR ϩ varicella vaccines by using Poisson regression as well as with supplementary regressions that incorporated chart-review results and self-controlled analyses. RESULTS:MMRV vaccine recipients (83 107) were compared with recipients of MMR ϩ varicella vaccines (376 354). Seizure and fever significantly clustered 7 to 10 days after vaccination with all measles-containing vaccines but not after varicella vaccination alone. Seizure risk during days 7 to 10 was higher after MMRV than after MMR ϩ varicella vaccination (relative risk: 1.98 [95% confidence interval: 1.43-2.73]). Supplementary analyses yielded similar results. The excess risk for febrile seizures 7 to 10 days after MMRV compared with separate MMR ϩ varicella vaccination was 4.3 per 10 000 doses (95% confidence interval: 2.6 -5.6). CONCLUSIONS:Among 12-to 23-month-olds who received their first dose of measles-containing vaccine, fever and seizure were elevated 7 to 10 days after vaccination. Vaccination with MMRV results in 1 additional febrile seizure for every 2300 doses given instead of separate MMR ϩ varicella vaccines. Providers who recommend MMRV should communicate to parents that it increases the risk of fever and seizure over that already associated with measles-containing vaccines.
The Vaccine Safety Datalink (VSD) project is a collaborative project between the Centers for Disease Control and Prevention and 8 managed care organizations (MCOs) in the United States. Established in 1990 to conduct postmarketing evaluations of vaccine safety, the project has created an infrastructure that allows for high-quality research and surveillance. The 8 participating MCOs comprise a large population of 8.8 million members annually (3% of the US population), which enables researchers to conduct studies that assess adverse events after immunization. Each MCO prepares computerized data files by using a standardized data dictionary containing demographic and medical information on its members, such as age and gender, health plan enrollment, vaccinations, hospitalizations, outpatient clinic visits, emergency department visits, urgent care visits, and mortality data, as well as additional birth information (eg, birth weight) when available. Other information sources, such as medical chart review, member surveys, and pharmacy, laboratory, and radiology data, are often used in VSD studies to validate outcomes and vaccination data. Since 2000, the VSD has undergone significant changes including an increase in the number of participating MCOs and enrolled population, changes in data-collection procedures, the creation of near real-time data files, and the development of near real-time postmarketing surveillance for newly licensed vaccines or changes in vaccine recommendations. Recognized as an important resource in vaccine safety, the VSD is working toward increasing transparency through data-sharing and external input. With its recent enhancements, the VSD provides scientific expertise, continues to develop innovative approaches for vaccine-safety research, and may serve as a model for other patient safety collaborative research projects. Pediatrics 2011;127:S45-S53
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.