Combination chemotherapy with or without radiotherapy has had only modest efficacy in the treatment of primary CNS lymphoma. Median survival of these patients, treated primarily with radiotherapy, is 13 months; 5-year survival is less than 5%. Thirty consecutive non-acquired immune deficiency syndrome patients with primary CNS lymphoma were treated with barrier-dependent chemotherapy using intraarterial mannitol to open the blood-brain barrier (BBB). Follow-up included extensive neuropsychologic testing of all patients. Thirteen patients received cranial radiation 1 to 9 months before referral (group 1). Seventeen patients received initial BBB disruption chemotherapy with subsequent radiation only for tumor progression or recurrence (group 2). The difference in median survivals from diagnosis--17.8 months for group 1 and 44.5 months for group 2--was statistically significant (P = .039). Group 1 survival is comparable with the 20-month median survival of a historical series of patients (n = 208) treated with radiotherapy with or without chemotherapy. Group 2 patient survival represents an advance in the survival of CNS lymphoma and was associated with preservation of cognitive function in six of seven nonirradiated complete responders observed for 1 to 7 years. Patient toxicity was manageable in this intensive therapeutic regimen. In this series, a plateau in survival curves suggests that a major portion of these patients may be cured without the neuropsychologic sequelae associated with cranial radiation.
BBBD resulted in global delivery of a variety of agents in a wide range of sizes. In this human brain tumor xenograft model, bradykinin was not effective at increasing delivery to the tumor of any agent tested.
The volume of distribution in tissue (Vt) that can be achieved by direct interstitial infusion of therapeutic agents into brain is limited. The maintenance of a pressure gradient during interstitial infusion to establish fluid convection has been shown to increase the Vt of small, medium, and large molecules. We have used monocrystalline iron oxide nanocompounds, superparamagnetic particles of sizes the same order of magnitude as virions, to investigate the effect of dose, the volume of infusate, and the time of infusion on the distribution of large molecules in rodent brain. Our initial study in rats (n = 6) replicated the results of a previously described report of convection-enhanced delivery in cats. At a constant rate and concentration, the Vt increased in a linear fashion, proportional to the increases in time, volume, and dose. When using a constant rate and a constant concentration, however, it is unclear which variable or variables (dose, volume, infusion time) have the greatest influence on this effect. Therefore, we assessed each variable independently (n = 12). When the iron dose was increased from 5.3 to 26.5 micrograms, there was a three- to fivefold increase in the Vt, depending on the volume and time of infusion (2 Microliters/20 min, 24 microliters/20 min, or 24 microliters/120 min) (P < 0.001). When the volume of infusate was increased from 2 to 24 microliters, at an infusion time of 20 minutes and a dose of either 5.3 or 26.5 micrograms, there was a 43 or 52% decline in the Vt, respectively (P = 0.018). When the time for the infusion of 24 microliters was increased from 20 to 120 minutes, there was a 79% increase in the Vt at a dose of 26.5 micrograms but no change in the Vt at a dose of 5.3 micrograms. The effect associated with infusion time was not significant (P = 0.113). Magnetic resonance imaging was performed to document the distribution of monocrystalline iron oxide nanocompounds in vivo, and histochemical staining for iron was used to document the distribution of monocrystalline iron oxide nanocompounds in tissue sections. The Vt for both methods was calculated by computer image analysis, and the correlation between magnetic resonance and histological volumes was determined (r2 = 0.93). On the basis of this model, we suggest that dose, rather than convection, might be the most important variable in maximizing the Vt and improved distribution might be achieved by administering an increased concentration of agent.
Delivery of viral particles to the brain is limited by the volume of distribution that can be obtained. Additionally, there is currently no way to non-invasively monitor the distribution of virus following delivery to the central nervous system (CNS). To examine the delivery of virus-sized particles across the blood-brain barrier (BBB), dextran coated, superparamagnetic monocrystalline iron oxide particles, with a hydrodynamic diameter of 20 +/- 4 nm, were delivered to rat brain by direct intracerebral inoculation or by osmotic BBB disruption with hypertonic mannitol. Delivery of these particles was documented by magnetic resonance (MR) imaging and, unexpectedly, neuronal uptake was demonstrated by histochemical staining. Electron microscopy (EM) confirmed iron particle delivery across the capillary basement membrane and localization within CNS parenchymal cells following administration with BBB disruption. This is the first histologic and ultrastructural documentation of the delivery of particles the size of virions across the blood-brain barrier. Additionally, these dextran-coated, iron oxide particles may be useful, in and of themselves, as vectors for diagnostic and/or therapeutic interventions directed at the CNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.